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SERIES WITH CAUCHY PRODUCT
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ABSTRACT. We show that the set of conditionally convergent real series

considered with Cauchy product is (w, 1)-algebrable.

By FS we denote the linear space of all formal series over R. We can con-

sider FS as a linear algebra with two different products, namely for >~>° ; x,

and "7 o yp let
o0 oo o0
() (Zn) - X
n=0 n=0 n=0
(point-wise product) and
o [e.e] e} n
(o) (X)X Y
n=0 n=0 n=0 k=0
(Cauchy product). By CCS we denote the set of all conditionally convergent
series. In [APS] Aizpuru et al. proved ¢-lineability of CCS and they consider
the algebras in (F'S,-) consisting of elements from CCS and c¢qp.
We say that subset E of some linear algebra is (a, 3)—algebrable if there
is a J-generated algebra A such that A C E \ {0} such that A is not 7—
generated for any 7 < § and linear dimension of A is equal to a. The
notion of algebrability was considered by many authors [ACPS]|, [APS1],
[AS], [GPS], [GS1], [BG].
It is easy to see that CCS is not algebrable in (F'S,-). However if we
consider the series of complex numbers, it appears that the set of all condi-
tionally convergent series with point-wise product is (¢, ¢)-algebrable [BGP].

This note is devoted to show that CCS is (w, 1)-algebrable in (FS, x).
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Our main tool will be the following classical result by Pringsheim. A
family {d°7° a5 : s € S} of series is absolutely equi-convergent if for any

e > 0 there is N such that Y 72 |25| < e for any n > N and s € S.

Theorem 1. [P] Let Y~ jan and Y7 by be convergent series. Assume

that the series
(ao + al) + (CLQ + ag) =+ (CL4 + a5) 4+ ...

is absolutely convergent. Suppose moreover that the family of series

F = {Z Ap(m)byn) : ¢, ¥ N = N with p(n),¥(n) > n}
n=0

is absolutely equi-convergent. Then Y o2 (cn = (D02 gan) X (Doorobn) is

convergent.

1. CONDITIONALLY CONVERGENT SERIES

We say that series Z;’LOZO an is alternating if ag, > 0 and ag,4+1 < 0 for
any n = 0,1,2,... It is an easy observation that the Cauchy product of two

alternating series is alternating.
Theorem 2. CCS is (w, 1)-algebrable in (FS, x).

Proof. Put a, = CD™ for any n € N. Note that the series > °  a, is

n+1
alternating. Define numbers aglk) inductively: ag) = ay for any n € N and

n

k1) — Z a® g

n m Yn—m
m=0

for any k£ > 1. We will use the well-known fact that
n—+00 o m +

n
1
lim ( e In(n + 1)) = v (Euler-Mascheroni constant).

Then there are 0 < C7; < (3 < oo such that

1
< 1 1
m+1_C’2 n(n+1)

Ciln(n+1) < Z

m=0
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for any n > 1. Having this we will show inductively that

k — k —
¥ k=L (n 4 1) < o) < P b1 (n + 1)
n+1 - n+1

for any n, k > 1 and certain positive constants C’%k) and C’ék). This is obvious

for k = 1. Assume that this is true for some k. Then

(k) —
Zam o, Z\a Mol < 3 G Tm ) 1

m+1 n+1l—m ™~

m=0

n

(k) 1 k—1 n
(k) 1, k-1 1 1 Cy " (n+1) 1 L
< 1) : = -
<Cyn (n+)m:0m+1 n+1l—m n+2 mz::O m+1+n+1—m -

- 20 k1 (n + 1) z”: 1 20 Cy In*(n + 1) - 20N Cy Ink (n + 1)
- n+2 —m+1" n+2 - n+1 '

Put Cékﬂ) = QCék)Cg. We also have

CPmF Y m 1) 1
Z\a Ha ‘_Z m+1 n+l-m "~

m=0

m nm

n

C(k) I (m +1 1 ./ n 1 1
1 ( ) > OB ph-1 (7) 3 .

/2 m+1 n+1—m 2 mz(n_l)/2m+1 n+1l-—m

>0§’“)1n’f*1(\/m) z”: <1 1 )2

- n-+ 2 m+1+n+l—m

m>(n—1)/2

S CYC)CH In®(n —1) B
= 2kI(n+4+2)

C{k) lnkfl(n -1) zn:
m

1
>
- 2kl(n+2) +1

]

m=

oo +1)
- 2k1(n 4 1) (

Dinf(n—1) Mo Gk (n+1)
NInFn+1) -~  2¢(n+1)
where
k(n _
0<C< (n-l—l)lnk(n 1)
(n+2)1n (n+1)

for any n € N. Put C(kH) el /2FC.

Let N be such that the map n — " (nt1) is decreasing on {N, N +

n+1
1,N +2,...} Note that for m > N

00 00 (k) 1. k—1
W) 11,0 | < 1 G @h)+1)
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> 1 ok lnk_l(n +1) > k) lnk_l(n +1)
< ) _ 2

n+1 = (n+1)?
for any ¢,v¥ : N — N with ¢(n),¥(n) > n. See that |a£11) + a,(11+)1| <

(h+1)

L L L. Hence using Theorem 1 we obtain that Y_°° ; an

n+tl ~ nt2 = (n+1)2

convergent.
Let A be a sub-algebra of (FS, x) generated by Y °a,. To end the

proof it is enough to show that the series

oo
Z (clagbl) + Cgag) + ...+ ckagk)>
n=0
is conditionally convergent for any natural number k£ and any reals cy, ..., cx
with ¢y, # 0. This follows from the fact that (300 an)® =320, al¥). This
series is clearly convergent as a linear combination of convergent series. We
will show that it is not absolutely convergent.
We may assume that ¢, = 1 and k > 2. Let M; = max;—12 k-1 %,
My = maxj—12__ ]Céi)\. Let mg € N be such that
2(k — 1) M M.
In(n+1) > 2K - VMM
o)
1

for any n > mg. Then

k — k — k —
0] > C b1 (n + 1) P k=2 (n 4 1) L 20k~ )M My O 1nF=2(n 4 1) N

= In(n+1)-

" n+1 n+1 C%k) n+1 -
k—2 k—1

> 90, M, In"*(n+1) W" “(n+1) In(n+1) N 1 >
n+1 n+1 n+1 n+1

> 203 (oY) + 10l 2] + o+ o] + [all)]) =

2 - —
Z @ (|Ck‘—1a£zk 1)| + |Ck—2a£1k 2)‘ + ...+ |C2a£12)| + \C1ag)|) Z
2
Z Tal ‘C’“*lag_l) + cp2a 2 4+ 4 cal? + 10V
K

Therefore

_ 1 1
lexal® | — |erall) + e0a® + .+ ep_1alF Y| > |epaP) | — 5\cka,(1k)| = §|cka;’“)\.
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Hence
S 00
> ‘01“9) +c20?) + o+ Ckaff)’ > ’Cla%” +ea® o a® | >
n=0 n=mg
> o0 (k)
Z ’\cka,(f)] - |01a,(11) + cza,(f) + ..+ ck_la;k_l)\‘ > Z ]cka2n| =0
n=mo n=mo

Note that in particular we have proved that the set {(>_00 ja,)* : k> 1} is

linearly independent. ([

2. APPENDIX

Since Prinsheim’s paper [P] is not readily accessible, we reproduce here

the proof of Theorem 1 for the sake of completeness of this note.

Proof. First we will show that ¢, — 0. We have

m m
Com = 5 arboym— + Z a2m—kbr, — Ambm,
k=0 k=0

m m
Com+1 = Z akbomi1—k + Z a2m+1—kbk-
k=0 k=0
Hence
m m
lenl < larbnr] + D lan—kbi| + |ambm|

k=0 k=0
where m = max{k € Z : k < n/2}. Since F is absolutely equi-convergent,

we find N € N with

i 93 " 93
E ]akbn_k\ < 5 and E ]an_kbk\ < 5
k=N k=N

Let n be such that

£
bl 1bp_1l, ees By S N
bl [br—1l, s br—N 1] max;en |a;[4N’

e
1y, Jan— < TN
|an‘, |an 1’7 ) ‘a’n N+1| max;eN |b2|4N

and |apmbm| < /5. Then

N-1 . N-1 .
Z lakbn—x| < E and Z |an—xbr| < =
k=0 k=0
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Hence

m m
lenl < larbnr] + D lan—kbi| + |ambm| =
k=0 k=0

N—1 m N-1 m
D awbn—il + > larbn—rl + D lan—kbel + > an—rbi| + lambm| < e
k=0 k=N k=0 k=N

Therefore ¢, — 0.

Recall that if the series > > ¢, is convergent to some C, then C' = AB,
where A =3 ja, and B =) " b,. Since ¢, — 0, it is enough to show
that

D4m = C4m AQmBZm - Z Ck — Z ag Z bl
k=0 =0

tends to zero, if m — oco.

‘We have
i4m k
Dim =) D aibi- Z—Zakzbl
k=0 (=0
4m 4m—1 2m
aozbz—i-cu Z bi+ ...+ agm— 1sz+a4mbo—(ao+a1+ A agm, sz
1=0 1=0 1=0 1=0
4m—1 2m—1 2m—2
Z bi+a1 Z bi+...+a2m—1b2m1+a2m 11 Z bi+aom+2 Z bi+...+agmby =
1=2m+1 I=2m+1 1=0 1=0
4m—1 4m—3
(ao+a) > bi+(az+as) D> b+t (G2m—2+ agm-1)bamir+
1=2m+1 I=2m+1
2m—1 2m—3
+(agm+azm+1) Z bi+(a2m+2+a2m+3) Z bi+...+(aam—2+aam—1)(bo+b1)+
1=0 1=0

apbam + a2b4m—2 + ... + @2m—2b2m+2 + a2mbam + aami2b2m—2 + ... + asmbo

—azm(bo + ...+ bgm).

Hence
m—1 4m—(2k+1) m—1 2m—(2k+1)
1Dam| <Y laggtaseal | D> b+ |aomipoetaomeonaal| D b+
k=0 I=2m+1 k=0 1=0

+ > laskbam—2k| + |am|

2m
> il
k=0
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Let G = max{) ;- |agk + agkt+1|, | peobrl} < co. Let € > 0 Let M € N
be such that the following inequalities hold for any m > M

dm—(2k+1)
> b <=
4G
1=2m+1
m—1 c
|a2m+2k + @2mt2k+1]| < ITek
k=0
€
|a2m| < E?

2m c
> laokbam—2k| < 1
k=0

To find such m in the last inequality one should repeat the same reasoning
as in the first part of the proof where it has been shown that ¢,, — 0. Now,

if m > M, then |Dy;,| < € and the result follows. 0
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