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Abstract. We show that the set of conditionally convergent real series

considered with Cauchy product is (ω, 1)-algebrable.

By FS we denote the linear space of all formal series over R. We can con-

sider FS as a linear algebra with two different products, namely for
∑∞

n=0 xn

and
∑∞

n=0 yn let ( ∞∑
n=0

xn

)
·

( ∞∑
n=0

yn

)
=

∞∑
n=0

xnyn

(point-wise product) and( ∞∑
n=0

xn

)
×

( ∞∑
n=0

yn

)
=

∞∑
n=0

n∑
k=0

xkyn−k

(Cauchy product). By CCS we denote the set of all conditionally convergent

series. In [APS] Aizpuru et al. proved c–lineability of CCS and they consider

the algebras in (FS, ·) consisting of elements from CCS and c00.

We say that subset E of some linear algebra is (α, β)–algebrable if there

is a β–generated algebra A such that A ⊂ E \ {0} such that A is not τ–

generated for any τ < β and linear dimension of A is equal to α. The

notion of algebrability was considered by many authors [ACPS], [APS1],

[AS], [GPS], [GS1], [BG].

It is easy to see that CCS is not algebrable in (FS, ·). However if we

consider the series of complex numbers, it appears that the set of all condi-

tionally convergent series with point-wise product is (c, c)-algebrable [BGP].

This note is devoted to show that CCS is (ω, 1)–algebrable in (FS,×).
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Our main tool will be the following classical result by Pringsheim. A

family {
∑∞

n=0 x
s
n : s ∈ S} of series is absolutely equi-convergent if for any

ε > 0 there is N such that
∑∞

k=n |xsn| < ε for any n ≥ N and s ∈ S.

Theorem 1. [P] Let
∑∞

n=0 an and
∑∞

n=0 bn be convergent series. Assume

that the series

(a0 + a1) + (a2 + a3) + (a4 + a5) + ...

is absolutely convergent. Suppose moreover that the family of series

F =

{ ∞∑
n=0

aϕ(n)bψ(n) : ϕ,ψ : N→ N with ϕ(n), ψ(n) ≥ n

}

is absolutely equi-convergent. Then
∑∞

n=0 cn = (
∑∞

n=0 an) × (
∑∞

n=0 bn) is

convergent.

1. conditionally convergent series

We say that series
∑∞

n=0 an is alternating if a2n ≥ 0 and a2n+1 ≤ 0 for

any n = 0, 1, 2, ... It is an easy observation that the Cauchy product of two

alternating series is alternating.

Theorem 2. CCS is (ω, 1)–algebrable in (FS,×).

Proof. Put an = (−1)n

n+1 for any n ∈ N. Note that the series
∑∞

n=0 an is

alternating. Define numbers a
(k)
n inductively: a

(1)
n = an for any n ∈ N and

a(k+1)
n =

n∑
m=0

a(k)
m a

(1)
n−m

for any k ≥ 1. We will use the well-known fact that

lim
n→∞

(
n∑

m=0

1

m+ 1
− ln(n+ 1)

)
= γ (Euler–Mascheroni constant).

Then there are 0 < C1 < C2 <∞ such that

C1 ln(n+ 1) ≤
n∑

m=0

1

m+ 1
≤ C2 ln(n+ 1)
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for any n ≥ 1. Having this we will show inductively that

C
(k)
1 lnk−1(n+ 1)

n+ 1
≤ |a(k)

n | ≤
C

(k)
2 lnk−1(n+ 1)

n+ 1

for any n, k ≥ 1 and certain positive constants C
(k)
1 and C

(k)
2 . This is obvious

for k = 1. Assume that this is true for some k. Then

|a(k+1)
n | =

∣∣∣∣∣
n∑

m=0

a(k)
m a

(1)
n−m

∣∣∣∣∣ =
n∑

m=0

|a(k)
m ||a

(1)
n−m| ≤

n∑
m=0

C
(k)
2 lnk−1(m+ 1)

m+ 1
· 1

n+ 1−m
≤

≤ C(k)
2 lnk−1(n+1)

n∑
m=0

1

m+ 1
· 1

n+ 1−m
=
C

(k)
2 lnk−1(n+ 1)

n+ 2

n∑
m=0

(
1

m+ 1
+

1

n+ 1−m

)
≤

≤ 2C
(k)
2 lnk−1(n+ 1)

n+ 2

n∑
m=0

1

m+ 1
≤ 2C

(k)
2 C2 lnk(n+ 1)

n+ 2
≤ 2C

(k)
2 C2 lnk(n+ 1)

n+ 1
.

Put C
(k+1)
2 = 2C

(k)
2 C2. We also have

|a(k+1)
n | =

∣∣∣∣∣
n∑

m=0

a(k)
m a

(1)
n−m

∣∣∣∣∣ =
n∑

m=0

|a(k)
m ||a

(1)
n−m| ≥

n∑
m=0

C
(k)
1 lnk−1(m+ 1)

m+ 1
· 1

n+ 1−m
≥

n∑
m=n/2

C
(k)
1 lnk−1(m+ 1)

m+ 1
· 1

n+ 1−m
≥ C(k)

1 lnk−1
(n

2

) n∑
m≥(n−1)/2

1

m+ 1
· 1

n+ 1−m
≥

≥ C
(k)
1 lnk−1(

√
n− 1)

n+ 2

n∑
m≥(n−1)/2

(
1

m+ 1
+

1

n+ 1−m

)
≥

≥ C
(k)
1 lnk−1(n− 1)

2k−1(n+ 2)

n∑
m=0

1

m+ 1
≥ C

(k)
1 C1 lnk(n− 1)

2k−1(n+ 2)
=

=
C

(k)
1 C1 lnk(n+ 1)

2k−1(n+ 1)
· (n+ 1) lnk(n− 1)

(n+ 2) lnk(n+ 1)
≥ C

(k)
1 C1C̃ lnk(n+ 1)

2k−1(n+ 1)
,

where

0 < C̃ ≤ (n+ 1) lnk(n− 1)

(n+ 2) lnk(n+ 1)

for any n ∈ N. Put C
(k+1)
1 = C

(k)
1 C1/2

kC̃.

Let N be such that the map n 7→ lnk−1(n+1)
n+1 is decreasing on {N,N +

1, N + 2, ...} Note that for m ≥ N
∞∑
n=m

|a(1)
ϕ(n)||a

(k)
ψ(n)| ≤

∞∑
n=m

1

ϕ(n) + 1
· C

(k)
2 lnk−1(ψ(n) + 1)

ψ(n) + 1
≤
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≤
∞∑
n=m

1

n+ 1
· C

(k)
2 lnk−1(n+ 1)

n+ 1
=

∞∑
n=m

C
(k)
2 lnk−1(n+ 1)

(n+ 1)2
<∞

for any ϕ,ψ : N → N with ϕ(n), ψ(n) ≥ n. See that |a(1)
n + a

(1)
n+1| ≤

1
n+1 −

1
n+2 ≤

1
(n+1)2

. Hence using Theorem 1 we obtain that
∑∞

n=0 a
(k+1)
n is

convergent.

Let A be a sub-algebra of (FS,×) generated by
∑∞

n=0 an. To end the

proof it is enough to show that the series

∞∑
n=0

(
c1a

(1)
n + c2a

(2)
n + ...+ cka

(k)
n

)
is conditionally convergent for any natural number k and any reals c1, ..., ck

with ck 6= 0. This follows from the fact that (
∑∞

n=0 an)k =
∑∞

n=0 a
(k)
n . This

series is clearly convergent as a linear combination of convergent series. We

will show that it is not absolutely convergent.

We may assume that ck = 1 and k ≥ 2. Let M1 = maxi=1,2,...,k−1
|ci|
|ck| ,

M2 = maxi=1,2,...,k |C
(i)
2 |. Let m0 ∈ N be such that

ln(n+ 1) >
2(k − 1)M1M2

C
(k)
1

for any n ≥ m0. Then

|a(k)
n | ≥

C
(k)
1 lnk−1(n+ 1)

n+ 1
= ln(n+1)·C

(k)
1 lnk−2(n+ 1)

n+ 1
>

2(k − 1)M1M2

C
(k)
1

·C
(k)
1 lnk−2(n+ 1)

n+ 1
≥

≥ 2M1M2

(
lnk−2(n+ 1)

n+ 1
+

lnk−1(n+ 1)

n+ 1
+ ...+

ln(n+ 1)

n+ 1
+

1

n+ 1

)
≥

≥ 2M1

(
|a(k−1)
n |+ |a(k−2)

n |+ ...+ |a(2)
n |+ |a(1)

n |
)
≥

≥ 2

|ck|

(
|ck−1a

(k−1)
n |+ |ck−2a

(k−2)
n |+ ...+ |c2a

(2)
n |+ |c1a

(1)
n |
)
≥

≥ 2

|ck|

∣∣∣ck−1a
(k−1)
n + ck−2a

(k−2)
n + ...+ c2a

(2)
n + c1a

(1)
n

∣∣∣ .
Therefore

|cka(k)
n | − |c1a

(1)
n + c2a

(2)
n + ...+ ck−1a

(k−1)
n | ≥ |cka(k)

n | −
1

2
|cka(k)

n | =
1

2
|cka(k)

n |.
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Hence
∞∑
n=0

∣∣∣c1a
(1)
n + c2a

(2)
n + ...+ cka

(k)
n

∣∣∣ ≥ ∞∑
n=m0

∣∣∣c1a
(1)
n + c2a

(2)
n + ...+ cka

(k)
n

∣∣∣ ≥
∞∑

n=m0

∣∣∣|cka(k)
n | − |c1a

(1)
n + c2a

(2)
n + ...+ ck−1a

(k−1)
n |

∣∣∣ ≥ ∞∑
n=m0

|cka
(k)
n |

2
=∞.

Note that in particular we have proved that the set {(
∑∞

n=0 an)k : k ≥ 1} is

linearly independent. �

2. Appendix

Since Prinsheim’s paper [P] is not readily accessible, we reproduce here

the proof of Theorem 1 for the sake of completeness of this note.

Proof. First we will show that cn → 0. We have

c2m =
m∑
k=0

akb2m−k +
m∑
k=0

a2m−kbk − ambm,

c2m+1 =
m∑
k=0

akb2m+1−k +
m∑
k=0

a2m+1−kbk.

Hence

|cn| ≤
m∑
k=0

|akbn−k|+
m∑
k=0

|an−kbk|+ |ambm|

where m = max{k ∈ Z : k ≤ n/2}. Since F is absolutely equi-convergent,

we find N ∈ N with

m∑
k=N

|akbn−k| <
ε

5
and

m∑
k=N

|an−kbk| <
ε

5
.

Let n be such that

|bn|, |bn−1|, ..., |bn−N+1| <
ε

maxi∈N |ai|4N
,

|an|, |an−1|, ..., |an−N+1| <
ε

maxi∈N |bi|4N
.

and |ambm| < ε/5. Then

N−1∑
k=0

|akbn−k| <
ε

5
and

N−1∑
k=0

|an−kbk| <
ε

5
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Hence

|cn| ≤
m∑
k=0

|akbn−k|+
m∑
k=0

|an−kbk|+ |ambm| =

N−1∑
k=0

|akbn−k|+
m∑

k=N

|akbn−k|+
N−1∑
k=0

|an−kbk|+
m∑

k=N

|an−kbk|+ |ambm| < ε.

Therefore cn → 0.

Recall that if the series
∑∞

n=0 cn is convergent to some C, then C = AB,

where A =
∑∞

n=0 an and B =
∑∞

n=0 bn. Since cn → 0, it is enough to show

that

D4m = C4m −A2mB2m =
4m∑
k=0

ck −
2m∑
k=0

ak

2m∑
l=0

bl

tends to zero, if m→∞.

We have

D4m =

4m∑
k=0

k∑
l=0

albk−l −
2m∑
k=0

ak

2m∑
l=0

bl =

a0

4m∑
l=0

bl+a1

4m−1∑
l=0

bl+ ...+a4m−1

1∑
l=0

bl+a4mb0− (a0 +a1 + ...+a2m)
2m∑
l=0

bl =

a0

4m∑
l=2m+1

bl+a1

4m−1∑
l=2m+1

bl+...+a2m−1b2m+1+a2m+1

2m−1∑
l=0

bl+a2m+2

2m−2∑
l=0

bl+...+a4mb0 =

(a0 + a1)

4m−1∑
l=2m+1

bl + (a2 + a3)

4m−3∑
l=2m+1

bl + ...+ (a2m−2 + a2m−1)b2m+1+

+(a2m+a2m+1)

2m−1∑
l=0

bl+(a2m+2+a2m+3)

2m−3∑
l=0

bl+...+(a4m−2+a4m−1)(b0+b1)+

a0b4m + a2b4m−2 + ...+ a2m−2b2m+2 + a2mb2m + a2m+2b2m−2 + ...+ a4mb0

−a2m(b0 + ...+ b2m).

Hence

|D4m| ≤
m−1∑
k=0

|a2k+a2k+1|

∣∣∣∣∣∣
4m−(2k+1)∑
l=2m+1

bl

∣∣∣∣∣∣+
m−1∑
k=0

|a2m+2k+a2m+2k+1|

∣∣∣∣∣∣
2m−(2k+1)∑

l=0

bl

∣∣∣∣∣∣+
+

2m∑
k=0

|a2kb4m−2k|+ |am|

∣∣∣∣∣
2m∑
k=0

bk

∣∣∣∣∣ .
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Let G = max{
∑∞

k=0 |a2k + a2k+1|, |
∑∞

k=0 bk|} < ∞. Let ε > 0 Let M ∈ N

be such that the following inequalities hold for any m ≥M∣∣∣∣∣∣
4m−(2k+1)∑
l=2m+1

bl

∣∣∣∣∣∣ < ε

4G
,

m−1∑
k=0

|a2m+2k + a2m+2k+1| <
ε

4G
,

|a2m| <
ε

4G
,

2m∑
k=0

|a2kb4m−2k| <
ε

4
.

To find such m in the last inequality one should repeat the same reasoning

as in the first part of the proof where it has been shown that cn → 0. Now,

if m ≥M , then |D4m| < ε and the result follows. �

Acknowledgement. The authors would like to thank Juan Seoane-
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