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Abstract. Given r ∈ [0, 1] we study descriptive complexity of the set Pr (respec-

tively Dr) of all compact sets K in the hyperspace K(R) with porosity r (density r)

at 0. We also show that the set NBP of all nowhere bilaterally porous compact sets

in K(R) is Π1
1–complete, and we prove a similar fact for density.

1. introduction

Consider the hyperspace K(R) of all nonempty compact sets equipped with the

Vietoris topology (i.e. the one generated by the sets of the form {K ∈ K(R) : K ⊂ U}

and {K ∈ K(R) : K∩U 6= ∅}, for U open in R; equivalently it is given by the Hausdorff

metric). The aim of our paper is to investigate descriptive complexity of families in

K(R) that consist of sets with prescribed porosity and density at a given point. Both

notions of porosity and metric density describe in various manners a local size of sets.

They play significant role in real analysis (see [2]). The origins of our studies come

from the paper [5] by Zajiček and Zelený where it was shown that compact σ–porous

sets form a Π1
1–complete subset of K(R).

Let us recall the notion of porosity on the real line. (Many facts on the porosity

can be found in the survey papers [6] and [7].) Let E ⊂ R, x ∈ R and R > 0. Denote

by λ+(x,R, E) the length of the largest open subinterval of (x, x+R) which does not

intersect E. The right-hand porosity of E at x is defined by the formula

p+(E, x) = lim sup
R→0+

λ+(x,R, E)

R
.
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Analogously we define the left-hand porosity of E at x, and denote it by p−(E, x).

If λ+(x,R, E) denotes the length of the largest open subinterval of (x − R, x + R)

which does not intersect E, then p(E, x) = lim supR→0+
λ(x,R,E)

2R
is the porosity of E

at x. A set E is called porous (strongly porous) from the right at x if p+(E, x) > 0

(p+(E, x) = 1). A set E is called bilaterally porous (strongly porous) at x if it is

porous (strongly porous) both from the right and from the left at x.

Let µ stand for Lebesgue measure on R. For a measurable E ⊂ R and x ∈ R, by

d+(x,E) we denote the right-hand density of E at the point x, that is d+(x,E) =

limh→0+
µ([x,x+h]∩E)

h
, provided the limit exists, and by d(x,E) = limh→0+

µ([x−h,x+h]∩E)
2h

we denote density of E at the point x, provided the limit exists. By symbol d+(x,E) we

denote the lower right-hand density ofE at x, that is, the number lim infh→0+
µ([x,x+h]∩E)

h
.

Similarly we define d+(x,E) – the upper right-hand density of E at the point x. If

d+(x,E) = 1 then x is called a right-hand density point of E. Analogously we intro-

duce the notions of left-hand density and left-hand density points.

We use standard set theoretic notation. See [4]. Let N = {0, 1, 2, ...}. Let X be a

Polish space. For ordinals α, 1 ≤ α ≤ ω1, we define the following pointclasses of Borel

sets by transfinite induction: Σ0
1 – open sets, Π0

1 – closed sets; and for 1 < α < ω1,

Σ0
α = {

⋃
n∈NAn : An ∈

⋃
β<α Π0

β} and Π0
α = {R \ A : A ∈ Σ0

α}. A subset A of X is

called analytic if it is the projection of a Borel subset B of X×X. A subset C of X is

called coanalytic if X \C is analytic. The pointclasses of analytic and coanalytic sets

are denoted by Σ1
1 and Π1

1, respectively. The symbol ∃∞ means ”for infinitely many”.

By Tr we denote the Polish space of all trees on N.

2. Compact sets with prescribed porosity and density

Lemma 1. Let 0 < ε < 1 and R > 0. Then {K ∈ K(R) : λ+(0, R,K) > εR} and

{K ∈ K(R) : λ+(0, R,K) < εR} are open sets.
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Proof. Let K0 ∈ K(R) be such that λ+(0, R,K0) > εR. Then there is a closed interval

I ⊂ (0, R) of length εR such that I ∩K0 = ∅. The set {K ∈ K(R) : K ⊂ R \ I} is an

open neighbourhood of K0 contained in {K ∈ K(R) : λ+(0, R,K) > εR}.

For every finite sequence 0 ≤ x0 < x1 < ... < xn such that xi − xi−1 < εR for

i = 1, 2, ..., n there is δ > 0 such that xi − xi−1 + 2δ < εR and xi − xi−1 > 2δ for

i = 1, 2, ..., n. We have

{K ∈ K(R) : λ+(0, R,K) < εR} =
⋃
{K ∈ K(R) : K∩(xi−δ, xi+δ) 6= ∅, i = 0, 1, ..., n}.

where the union is taken over all described above finite sequences x0, ..., xn. �

Theorem 2. Let r ∈ [0, 1] and P+
r = {K ∈ K(R) : p+(K, 0) = r}. Then

(a) P+
r is Π0

3–complete;

(b) P+
1 is Π0

2–complete.

Proof. (a) Denote by Q+ the set of all positive rationals. Observe that

P+
r = {K ∈ K(R) : ∀ε > 0 ∃R0 > 0 ∀R ∈ (0, R0)

λ+(0, R,K)

R
≤ (1 + ε)r}∩

{K ∈ K(R) : ∀ε > 0 ∀R0 > 0 ∃R ∈ (0, R0)
λ+(0, R,K)

R
≥ (1− ε)r} =⋂

ε∈Q+

⋃
R0∈Q+

⋂
R∈(0,R0)∩Q+

{K ∈ K(R) :
λ+(0, R,K)

R
≤ (1 + ε)r}∩

⋂
ε∈Q+

⋂
R0∈Q+

⋃
R∈(0,R0)∩Q+

{K ∈ K(R) :
λ+(0, R,K)

R
≥ (1− ε)r}.

Hence by Lemma 1 we have that P+
r is Π0

3.

Let t ∈ (0, 1 − r), bn = tn and akn = (bn+1
k

1−r + bn)/(k + 1) for n, k ∈ N. We have

bn+1 < akn < bn for all n, k ∈ N. Define Fr : NN → K(R) by

Fr(α) = {0} ∪
⋃
n∈N

[aα(n)
n , bn], α ∈ NN.

Let ε > 0. Fix n ∈ N such that bn < ε and let α, α′ ∈ NN be such that α(k) = α′(k) for

k ≤ n. Then dH(Fr(α), Fr(α
′)) < ε where dH stands for the Hausdorff metric induced

by the natural metric on R. This shows the continuity of Fr.
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Recall that C3 = {α ∈ NN : limn→∞ α(n) =∞} is Π0
3–complete (see [4, 23.A]). Our

proof will be finished if we show that Fr(α) ∈ P+
r ⇐⇒ α ∈ C3.

Let α ∈ C3. Then

p+(Fr(α), 0) = lim sup
n→∞

a
α(n)
n − bn+1

a
α(n)
n

= lim sup
n→∞

(
1− bn+1

a
α(n)
n

)
=

lim sup
n→∞

(
1− bn+1(α(n) + 1)

bn+1
α(n)
1−r + bn

)
= 1− (1− r) = r.

Hence Fr(α) ∈ P+
r .

Let α /∈ C3. Then there are a strictly increasing sequence {nk} of natural numbers

and a number N ∈ N such that α(nk) = N for all k ∈ N. Hence

p+(Fr(α), 0) = lim sup
n→∞

a
α(n)
n − bn+1

a
α(n)
n

≥ lim sup
k→∞

a
α(nk)
nk − bnk+1

a
α(nk)
nk

=

lim sup
k→∞

(
1− bnk+1N + bnk+1

bnk+1
N

1−r + bnk

)
= lim sup

k→∞

(
1− bnk+1N + bnk+1

bnk+1
N

1−r + t−1bnk+1

)
=

1− N + 1
N

1−r + t−1
= 1− (N + 1)(1− r)

N + t−1(1− r)
.

Note that

1− (N + 1)(1− r)
N + t−1(1− r)

− r =
r2t−1 + r(1− 2t−1) + t−1 − 1

N + t−1(1− r)
.

Let f(r) = r2t−1 + r(1− 2t−1) + t−1 − 1. It is easy to check that f(r) = 0 if and only

if either r = 1− t or r = 1. Then f(r) > 0 for r ∈ [0, 1− t). Hence p+(Fr(α), 0) > r

and Fr(α) /∈ P+
r .

(b) We have

P+
1 = {K ∈ K(R) : lim sup

R→0+

λ+(0, R,K)

R
= 1} =

{K ∈ K(R) : ∀ε > 0 ∀R0 > 0 ∃R ∈ (0, R0)
λ+(0, R,K)

R
> (1− ε)} =

⋂
ε∈Q+

⋂
R0∈Q+

⋃
R∈(0,R0)∩Q+

{K ∈ K(R) :
λ+(0, R,K)

R
> (1− ε)}.

By Lemma 1 we infer that P+
1 is Π0

2.
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Recall that N2 = {α ∈ {0, 1}N : ∃∞n (α(n) = 0)} is Π0
2–complete (see [4, 23.A]).

Define G : {0, 1}N → K(R) by

G(α) = {0} ∪
⋃

α(n)=1

[
1

(n+ 1)!
,

1

n!

]
, α ∈ {0, 1}N.

To show continuity of G we employ exactly the same argument as for Fr. Hence our

proof will be complete if we show that G(α) ∈ P+
1 ⇐⇒ α ∈ N2.

Let α ∈ N2 and let {nk} be a strictly increasing sequence of natural numbers such

that α(nk) = 0 for k ∈ N. Then

p+(G(α), 0) ≥ lim sup
k→∞

1
nk!
− 1

(nk+1)!

1
nk!

= lim sup
k→∞

nk
nk + 1

= 1.

Hence G(α) ∈ P+
1 .

Let α /∈ N2. So, there is N ∈ N such that α(n) = 1 for n ≥ N . Then G(α) ⊃ [0, 1
N !

]

and p+(G(α), 0) = 0. Hence G(α) /∈ P+
1 .�

Corollary 3. The set P+
0 (SP+

0 ) of all compact sets which are porous (strongly porous)

from the right at 0 is Σ0
3–complete (Π0

2–complete).

Now, we will prove the analogue of Theorem 2 when the operator of porosity is

replaced by the operator of density.

Lemma 4. Let 0 < ε < 1, h > 0. Then {K ∈ K(R) : µ([0, h] ∩K) < εh} is open.

Proof. Observe that

{K ∈ K(R) : µ([0, h] ∩K) < εh} =

{K ∈ K(R) : ∃U – an open set, µ(U ∩ [0, h]) < εh and K ⊂ U}.

This is an open set as the union of basic open sets in K(R). �

Proposition 5. Let r ∈ [0, 1] and let D+
r = {K ∈ K(R) : d+(0, K) = r}. Then D+

r is

Π0
4.
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Proof. Let r ∈ [0, 1]. For a measurable set E ⊂ R and t ∈ [0, 1] we have

lim
h→0+

µ(E ∩ [0, h])

h
= t ⇐⇒ lim

n→∞

µ(E ∩ [0, 1/n])

1/n
= t.

Using this we obtain

D+
r = {K ∈ K(R) : ∀ε > 0 ∃N ∀n ≥ N r − ε ≤ nµ(K ∩ [0, 1/n]) < r + ε} =⋂

ε∈Q+

⋃
N∈N

⋂
n≥N

{K ∈ K(R) : r − ε ≤ nµ(K ∩ [0, 1/n]) < r + ε}.

By Lemma 4 the set {K ∈ K(R) : r− ε ≤ nµ(K ∩ [0, 1/n]) < r + ε} is Π0
2. Hence D+

r

is Π0
4. �

Theorem 6. D+
1 is Π0

3–complete.

Proof. Observe that

D+
1 = {K ∈ K(R) : ∀ε > 0 ∃h′ > 0 ∀h ∈ (0, h′) µ([0, h] ∩K) ≥ (1− ε)h} =⋂

ε∈Q+

⋃
h′∈Q+

⋂
h∈Q+∩(0,h)

{K ∈ K(R) : µ([0, h] ∩K) ≥ (1− ε)h}.

By Lemma 4 the set D+
1 is Π0

3.

Put bn = 1
2n

and akn = kbn+1+bn
k+1

. Define F : NN → K(R) by

F (α) = {0} ∪
⋃
n∈N

[aα(n)
n , bn], α ∈ NN.

The argument for the continuity of F is the same as in the proof of Theorem 2 for Fr.

Hence our proof will be finished if we show that F (α) ∈ D+
1 ⇐⇒ α ∈ C3.

Fix α ∈ C3. Let 0 < ε < 1 and pick N ∈ N be such that N
N+2

> 1− ε. Then there

is k ∈ N such that for all n ≥ k we have α(n) ≥ N . Notice that

d+(0, F (α)) ≥ lim inf
k→∞

(
1

a
α(k)
k

∞∑
n=k+1

(
bn − aα(n)

n

))
=

lim inf
k→∞

(
α(k) + 1

α(k)bk+1 + bk

∞∑
n=k+1

(
bn −

α(n)bn+1 + bn
α(n) + 1

))
=
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lim inf
k→∞

(
α(k) + 1

α(k)2−k−1 + 2−k

∞∑
n=k+1

α(n)(bn − bn+1)

α(n) + 1

)
≥

lim inf
k→∞

(
N + 1

N2−k−1 + 2−k
· N

N + 1

∞∑
n=k+1

1

2n+1

)
=

N

N + 2
> 1− ε.

Hence F (α) ∈ D+
1 .

Let α /∈ C3. There are a strictly increasing sequence {nk} of natural numbers and

a number N ∈ N such that α(nk) = N for all k ∈ N. Then

d+(0, F (α)) ≤ lim sup
k→∞

(
1

bnk

∞∑
n=nk

(bn − aα(n)
n )

)
= lim sup

k→∞

(
2nk

∞∑
n=nk

α(n)

α(n) + 1
· 1

2n+1

)
≤

lim sup
k→∞

(
2nk

(
N

N + 1
· 1

2nk+1
+

∞∑
n=nk+1

1

2n+1

))
=

(
N

N + 1
+ 1

)
1

2
< 1.

Hence F (α) /∈ D+
1 . �

Remark. All results of this section remain true if we consider p−(K, 0) or p(K, 0)

instead of p+(K, 0), and d−(0, K) or d(0, K) instead of d+(0, K).

3. nowhere bilaterally porous sets

Let us return to the notion of porosity. Consider a subspace of Tr defined by

T̃ r = {T ∈ Tr : ∀s ∈ N<N ∀n ∈ N (ŝ n ∈ T ⇒ ∀m ∈ N ŝ m ∈ T )} =

⋂
s∈N<N

⋂
n∈N

({T ∈ Tr : ŝ n /∈ T} ∪
⋂
m∈N

{T ∈ Tr : ŝ m ∈ T}).

Note that T̃ r is a Polish space as a closed subset of Tr. By W̃F we denote WF ∩ T̃ r,

where WF is the set of all well-founded trees on N. We have

T is well-founded ⇐⇒ T ∪ {ŝ m ∈ N<N : (∃n ∈ N ŝ n ∈ T ) and m ∈ N} ∈ W̃F .

It is well know that WF is Π1
1–complete. The following map

T 7→ T ∪ {ŝ m ∈ N<N : (∃n ∈ N ŝ n ∈ T ) and m ∈ N}
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is Borel as a pointwise limit of continuous maps Rk : Tr → T̃ r defined by

Rk(T ) = T ∪ {ŝ m ∈ N<N : (∃n ∈ N ŝ n ∈ T ) and m < k}.

Since the notions of Π1
1–completeness and Borel Π1

1–completeness coincide (see [3]),

W̃F is a Π1
1–complete subset of T̃ r.

Now, we are ready to prove the following:

Theorem 7. Let NBP ⊂ K(R) be of the form

NBP = {K ∈ K(R) : ∀x ∈ R [x ∈ K ⇒ (p−(K, x) = 0 or p+(K, x) = 0)]}.

Then NBP is Π1
1–complete.

Proof. First we will show that NBP is coanalytic. Plainly NBP is co-projection of

the set

{(K, x) ∈ K(R)× R : x ∈ K ⇒ (p−(K, x) = 0 or p+(K, x) = 0)}.

We need only to show that

A = {(K, x) ∈ K(R)× R : p+(K, x) = 0}

is Borel. We have

A = {(K, x) ∈ K(R)× R : lim sup
R→0+

λ+(x,R,K)

R
= 0} =

{(K, x) ∈ K(R)× R : ∀ε > 0 ∃R0 > 0 ∀R ∈ (0, R0) λ+(x,R,K) < εR} =

⋂
ε∈Q+

⋃
R0∈Q+

⋂
R∈(0,R0)∩Q

{(K, x) ∈ K(R)× R : λ+(x,R,K) < εR}.

To finish the proof of Borelness, it is enough to check that

{(K, x) ∈ K(R)× R : λ+(x,R,K) < εR}
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is open. Let (K, x) be such that λ+(x,R,K) < εR, for fixed positive rational numbers

R and ε. Put δ = εR − λ+(x,R,K). Using the compactness of K, pick a family

{U1, ..., Uk} of open intervals, with diameters less than δ/3, such that

K ⊂
k⋃
i=1

Ui and K ∩ Ui 6= ∅ for i = 1, ..., k.

Let

V = {L ∈ K(R) : L ∩ Ui 6= ∅ for i = 1, .., k}.

This is an open neighbourhood of K. Let (L, y) ∈ V × (x− δ/3, x+ δ/3). Then

λ+(y,R, L) ≤ λ+(x,R,K) +
2

3
δ < εR.

We have shown that {(K, x) ∈ K(R) × R : λ+(x,R,K) < εR} is open. Hence NBP

is Π1
1. For a, b ∈ R such that a < b, let

φ[a,b](x) = φ(a,b)(x) = a+ (b− a)x, for x ∈ R.

This is an affine function which maps [0, 1] onto [a, b]. Let K∅ = ∅ and L∅ = [0, 1]. For

n,m ∈ N let

Kn = φ[ 1
3
, 2
3

]

([
1

2n+ 2
,

1

2n+ 1

])
, Ln = φ[ 1

3
, 2
3

]

((
1

2n+ 3
,

1

2n+ 2

))
.

For s ∈ N<N and m ∈ N we define inductively

Ksˆm = φLs(Km), Lsˆm = φLs(Lm).

Let T ∈ T̃ r. Then the mapping

T 7→ cl(
⋃
s∈T

Ks) ∈ K(R)

is continuous. For α ∈ NN let xα be the unique point of
⋂
n∈N Lα|n. Then xα is a

limit of any sequence (xn) such that xn ∈ Kα|n for all n. For s ∈ N<N let ys =

inf Ls+ 1
3
(supLs− inf Ls). Then ys is a limit of any sequence (yn) such that yn ∈ Ksˆn

for all n.
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To prove the assertion, it suffices to show that T ∈ W̃F ⇐⇒ cl(
⋃
s∈T Ks) ∈ NBP.

This is exactly the reduction of the Π1
1–complete set W̃F to NBP by a continuous

function.

Suppose that T ∈ W̃F and let x ∈ cl(
⋃
s∈T Ks). If x ∈ Ks for some s ∈ T , then x

can not be both left-hand and right-hand porosity point of cl(
⋃
s∈T Ks). If x /∈ Ks for

all s ∈ T , then x = ys for some s ∈ T . Indeed, suppose that x 6= ys for all s ∈ T . There

exists a sequence ysn → x with ysn ∈ Ksn and sn ∈ T . From x 6= y〈〉 (where 〈〉 stands

for the empty sequence) it follows that {sn(0)}n∈N is bounded. Hence there is k0 such

that {n ∈ N : sn(0) = k0} is infinite. Proceeding inductively one can find a sequence

α = (k0, k1, k2, ...) such that α|n ∈ T for all n ∈ N, which yields a contradiction.

Let R > 0 and let n ∈ N be the first number such that Lsˆn ⊂ (x, x + R). Then

λ+(x,R, cl(
⋃
s∈T Ks)) ≤ 1

n+1
R and p+(cl(

⋃
s∈T Ks), x) = 0. Hence cl(

⋃
s∈T Ks) ∈

NBP .

For a, b ∈ R such that a < b, the intervals (a, 2a+b
3

), (2a+b
3
, a+2b

3
), (a+2b

3
, b) will be

called the left, the central and the right subintervals of (a, b), respectively. Suppose

that T /∈ W̃F . Then the body [T ] of T is nonempty. Let α ∈ [T ]. Then α|n ∈

T for all n ∈ N, and xα ∈ cl(
⋃
s∈T Ks). For every n ∈ N the point xα is in the

central subinterval of Lα|n with the length 1
3
|Lα|n|. Since both the left and the right

subintervals are disjoint with cl(
⋃
s∈T Ks), we have λ±(x, 2

3
|Lα|n|, cl(

⋃
s∈T Ks)) >

1
2

and thus p±(cl(
⋃
s∈T Ks), x) ≥ 1

2
. Hence cl(

⋃
s∈T Ks) /∈ NBP . �

Remark. One can slightly modify this proof to show that the set

{K ∈ K(R) : K is not bilaterally strongly porous at x, for all x ∈ K}

is Π1
1–complete.

Given three sets A, B and C in the same Polish space, we say that C separates A

and B if A ⊂ C and B ∩ C = ∅. A pair of disjoint coanalytic sets which cannot be

separated by any Borel set is called Borel–inseparable (see [1]).
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Corollary 8. Let NBP ′ be the family of all compact sets K in K(R) that are bilater-

ally porous at exactly one point x ∈ K. Then NBP and NBP ′ is a Borel–inseparable

pair of coanalytic sets.

Proof. Let UB be the set of all trees on N with a unique infinite branch. It is known

that WF and UB is a Borel–inseparable pair of coanalytic sets (see [4, Exercise 35.2]).

Note that

T ∈ W̃F ⇐⇒ cl(
⋃
s∈T

Ks) ∈ NBP and T ∈ ŨB ⇐⇒ cl(
⋃
s∈T

Ks) ∈ NBP ′,

where ŨB = UB ∩ T̃ r. Hence NBP and NBP ′ are Borel–inseparable. �

The set NBP introduced in Theorem 7 consists of nowhere bilaterally porous com-

pact sets. These sets have rather ”large local size”. Another variant of such sets

constructed by operator of density is described by the family

OSD = {K ∈ K(R) : ∀x ∈ K (d−(x,K) = 1 or d+(x,K) = 1)}.

Thus K ∈ OSD iff every point of K is its at least one-sided density point.

Let (an) and (bn) be sequences of real numbers such that an < bn < an−1, an → 0

and d+(0,
⋃∞
n+1[an, bn]) = 1. If in the proof of Theorem 8 we put

Kn = φ[ 1
3
, 2
3

]([an, bn]) and Ln = φ[ 1
3
, 2
3

]((bn+1, an)),

then we can obtain the following counterpart of Theorem 7 for the operator of density:

Theorem 9. The set OSD is Π1
1–complete.

At the first look, it is not obvious that sets NBP and OSD are different. To

see this, observe that p+({1/n : n ∈ N, n > 0}, 0) = 0. For every n ≥ 1, let

[an, bn] be an interval such that (an + bn)/2 = 1
n

and d+(0,
⋃∞
n=1[an, bn]) = 0. Then⋃∞

n=1[an, bn] ∪ {0} ∈ NBP \OSD.
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