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Abstract. We prove that the set of all functions in C[0, 1], with countably many

points at which the derivative does not exist, is Π1
1–complete, in particular non–Borel.

We obtain the classical Mazurkiewicz’s theorem and the recent result of Sofronidis

as corollaries from our result.

Let C[0, 1] stand for the Banach space of all real valued continuous functions on [0, 1],

with the supremum norm. The classical result of Mazurkiewicz [3, 33.9] states that the

set DIFF of all functions in the space C[0, 1] which are differentiable everywhere is

Π1
1–complete, in particular non–Borel. In the recent paper [5] Sofronidis showed that

the set of piecewise differentiable functions forms a Π1
1–complete set. By definition,

a piecewise differentiable function has finitely many points at which derivative does

not exist. In this note we study what will happen if we change in Sofronidis’ theorem

the statement ”finitely” into ”countable”. Namely, Corollary 3 (iv) states that the

set of all functions from C[0, 1], with countably many points at which the derivative

does not exist, is Π1
1–complete. Our basic construction which leads to Theorem 1

mimics a technique contained in the proof of the Mazurkiewicz theorem presented in

Kechris’ monograph [3]. As corollaries, we will obtain the results of Mazurkiewicz

and Sofronidis. The modification of the construction from [3] consists in using an

additional parameter d ∈ {0, 1}N. Thanks to this we can generate appropriate perfect

sets. By a perfect set in a metric space we mean a non-empty, closed and dense-itself

set.
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We use standard notation. For the descriptive set–theoretical background we refer

the reader to [3]. Let X be a Polish space. A subset A of X is called analytic if it is

the projection of a Borel subset B of X × X onto the first factor. A subset D of X

is called coanalytic if X \ D is analytic. The pointclasses of analytic and coanalytic

sets are denoted by Σ1
1 and Π1

1, respectively. A set D ⊂ X is said to be Π1
1–hard if

for every zero–dimensional Polish space Y and every coanalytic set B ⊂ Y there is a

continuous function f : Y → X such that f−1(D) = B. A set is called Π1
1–complete if

it is Π1
1–hard and coanalytic.

For a non-empty set A, by A<N we denote the set of all finite sequences of elements

of A together with the empty sequence ∅. For s = (a0, ..., an−1) ∈ A<N and m ∈ N such

that m < n, let s|m = (a0, ..., am−1) and |s| = n (additionally s|0 = ∅ and |∅| = 0).

Analogously for an infinite sequence α ∈ AN let α|m = (α(0), ..., α(m − 1)). A set

T ⊂ A<N is called a tree on A if

∀s ∈ T∀m ∈ N(m < |s| ⇒ s|m ∈ T ).

For a tree T on A let [T ] = {α ∈ NN : ∀m ∈ N (α|m ∈ T )}. We say that T is well-

founded if [T ] = ∅. By Tr we denote the space of all trees on N, and by WF we denote

the set of all well founded trees in Tr. Identifying trees on N with their characteristic

functions we may treat Tr as a subspace of {0, 1}N<N (this space is homeomorphic to

the Cantor space {0, 1}N). It is known that Tr is a closed subset of {0, 1}N<N (cf. [3,

4.32]). Hence Tr is a Polish space. In the sequel we will use the fact that WF is

Π1
1–complete (cf. [3, 32.B]); to prove the Π1

1–hardness of a set A ⊂ X we will define a

continuous map f : Tr → X such that f−1(A) = WF . This is the most common way

to prove Π1
1–hardness; a nontrivial part of such a proof is to find a suitable continuous

map.

Basic construction (cf. [3, pp. 248–251])

For an interval K = [u, v], by K(L) and K(R) we denote the left half and the right

half of K, respectively (i.e. K(L) = [u, 1
2
(u + v)] and K(R) = [1

2
(u + v), v]); |J | is the

length of the interval J ; if s is a finite sequence, denote by |s| the length of s. Let
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Z = {(s, d) ∈ N<N × {0, 1}<N : |s| = |d|} and fix a bijection (s, d) 7→ 〈(s, d)〉 between

Z and N. For T ∈ Tr let Z(T ) = {(s, d) ∈ Z : s ∈ T}. For (s, d) ∈ Z by |(s, d)|

we denote a common value of |s| and |d|. For f ∈ C[0, 1] let ND(f) = {x ∈ [0, 1] :

f ′(x) does not exist} (here ”f ′(x) does not exist” means that limy→x
f(x)−f(y)

x−y does not

exist or is infinite).

Given a closed interval I = [a, b] ⊂ [0, 1], define ϕ(x, I) : [0, 1]→ R by the formula

ϕ(x, I) =


16(x−a)2(x−b)2

(b−a)3 , if x ∈ I,

0, otherwise.

Note that ϕ(x, I) is differentiable on [0, 1].

Now, for each (s, d) ∈ Z, define closed intervals J(s,d) and K(s,d) as follows:

i) K(s,d) ⊂ J(s,d) is concentric in J(s,d), and |K(s,d)| ≤ 2−〈(s,d)〉(|J(s,d)| − |K(s,d)|);

ii) J(sˆn,dˆi) ⊂ K
(L)
(s,d) for each n ∈ N and i ∈ {0, 1};

iii) J(sˆn,dˆi) ∩ J(sˆm,dˆj) = ∅, if (n, i) 6= (m, j).

Let J(∅,∅) = [0, 1] and the further construction of the above intervals is easy to obtain

by induction with respect to the length |(s, d)|. Given a tree T on N, let

FT (x) =
∑

(s,d)∈Z(T )

ϕ(x,K
(R)
(s,d)), x ∈ [0, 1].

Since 0 ≤ ϕ(x,K
(R)
(s,d)) ≤ |K

(R)
(s,d)| ≤ 2−〈(s,d)〉, then FT ∈ C[0, 1]. We will show that

T 7→ FT is a continuous mapping from Tr to C[0, 1]. Let ε > 0 and let N ∈ N be such

that 2−(N−2) < ε. Fix T ∈ Tr and let S ∈ Tr be any tree such that

T ∩ {s ∈ N<N : ∀d ∈ {0, 1}<N(|d| = |s| ⇒ 〈(s, d)〉 < N)} =

S ∩ {s ∈ N<N : ∀d ∈ {0, 1}<N(|d| = |s| ⇒ 〈(s, d)〉 < N}.

Then for any x ∈ [0, 1] we have

|FT (x)− FS(x)| ≤
∑

(s,d)∈Z(T ),〈(s,d)〉≥N

ϕ(x,K
(R)
(s,d)) +

∑
(s,d)∈Z(S),〈(s,d)〉≥N

ϕ(x,K
(R)
(s,d)) ≤

∑
i≥N

(2−i + 2−i) =
1

2N−2
< ε.



4 SZYMON G LA̧B

Let

GT =
⋃
y∈[T ]

⋂
n

⋃
d∈{0,1}n

J(y|n,d), T ∈ Tr.

Note that for every y ∈ NN the set
⋂
n

⋃
d∈2n J(y|n,d) is a homeomorphic image of the

Cantor set. Hence for every T ∈ Tr we have

(∗) (T ∈ WF ⇐⇒ GT = ∅) and (T /∈ WF ⇐⇒ GT contains a perfect set).

Theorem 1. The function T 7→ FT has the following properties:

1) T ∈ WF ⇐⇒ ND(FT ) = ∅;

2) T /∈ WF ⇐⇒ ND(FT ) contains a nonempty perfect set.

Proof. By (∗) it suffices to prove that for each x ∈ [0, 1] we have

x /∈ GT ⇐⇒ F ′T (x) exists.

If x ∈ GT , then there are y ∈ [T ] and z ∈ {0, 1}ω such that x ∈ K
(L)
(y|n,d|n) for all

n ∈ N. Let cn be the centre of K
(R)
(y|n,d|n) and let ln = |K(R)

(y|n,d|n)|/2. Then FT (x) = 0

and FT (cn + ln) = 0 for every n ∈ N, so

∀n ∈ N FT (cn + ln)− FT (x)

cn + ln − x
= 0.

On the other hand,

∀n ∈ N FT (cn)− FT (x)

cn − x
≥ 2ln

3ln
=

2

3
.

Since cn → x, cn + ln → x, then F ′T (x) does not exist.

If x /∈ GT , then x is an element of at most finitely many intervals of type J(s,d), so

there is N ∈ N such that

∀(s, d) ∈ Z(T ) (〈(s, d)〉 ≥ N ⇒ x /∈ J(s,d)).

Let a pair (s, d) ∈ Z(T ) be such that 〈(s, d)〉 ≥ N and let h ∈ R \ {0}. If |h| <

|J(s,d)| − |K(s,d)|, then x+ h /∈ K(R)
(s,d), so ϕ(x,K

(R)
(s,d)) = 0. Hence∣∣∣∣∣ϕ(x+ h,K

(R)
(s,d))− ϕ(x,K

(R)
(s,d))

h

∣∣∣∣∣ =
ϕ(x+ h,K

(R)
(s,d))

|h|
≤

|K(R)
(s,d)|

|J(s,d)| − |K(s,d)|
≤ 2−〈(s,d)〉.
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For n ≥ N let

F
(n)
T (x) =

∑
(s,d)∈Z(T ),〈(s,d)〉≤n

ϕ(x,K
(R)
(s,d)).

We show that F ′T (x) exists. Let ε > 0 and let n ≥ N be such that 2−n < ε/2. Let

k = min{|(s, d)| : (s, d) ∈ Z(T ) and 〈(s, d)〉 ≥ n} and fix a pair (s, d) ∈ Z(T ) such

that |(s, d)| = k. Put δ = |J(s,d)| − |K(s,d)|. Let |h| ∈ (0, δ). Then we have∣∣∣∣∣FT (x+ h)− FT (x)

h
− F

(n)
T (x+ h)− F (n)

T (x)

h

∣∣∣∣∣ ≤
≤

∑
(s,d)∈Z(T ),〈(s,d)〉>n

∣∣∣∣∣ϕ(x+ h,K
(R)
(s,d))− ϕ(x,K

(R)
(s,d))

h

∣∣∣∣∣ ≤
∞∑

j=n+1

2−j = 2−n <
ε

2
.

Since F
(n)
T is differentiable, there is δ ∈ (0, δ] such that∣∣∣∣∣F (n)

T (x+ h)− F (n)
T (x)

h
− F

(n)
T (x+ h′)− F (n)

T (x)

h′

∣∣∣∣∣ < ε

2

for every h, h′ such that |h|, |h′| ∈ (0, δ). From this and the previous estimations we

obtain ∣∣∣∣FT (x+ h)− FT (x)

h
− FT (x+ h′)− FT (x)

h′

∣∣∣∣ < ε

for every h, h′ such that |h|, |h′| ∈ (0, δ). Hence F ′T (x) exists and is finite.

Corollary 2. Let R be a family of countable subsets of [0, 1] such that ∅ ∈ R. Then

a set {f ∈ C[0, 1] : ND(f) ∈ R} is Π1
1–hard. In particular, if this set is coanalytic,

then it is Π1
1–complete.

Corollary 3. (i) {f ∈ C[0, 1] : ND(f) = ∅} is Π1
1–complete (Mazurkiewicz [3,

33.9]);

(ii) {f ∈ C[0, 1] : ND(f) is finite} is Π1
1–complete (Sofronidis [5]);

(iii) {f ∈ C[0, 1] : ND(f) is countable} is Π1
1–complete;

(iv) {f ∈ C[0, 1] : ND(f) is countable Gδ} is Π1
1–complete.
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Proof. By Corollary 2 the sets in (i)–(iv) are Π1
1–hard. It remains to prove that they

are coanalytic.

Let E = {(f, x) ∈ C[0, 1] × [0, 1] : f ′(x) doest not exist}. It is known that E is Σ0
3

([3, 23.23]). The set in (i) is the complement of the projection of E onto the first axis.

The set in (ii) is the complement of the projection of a Borel set

{(f, (xn)) ∈ C[0, 1]× [0, 1]ω : (∀i 6= j)xi 6= xj and ∀n(f ′(xn) does not exist)}

onto the first axis.

Let Ef = {x ∈ [0, 1] : (x, f) ∈ E}. We have {f ∈ C[0, 1] : ND(f) is countable} =

{f ∈ C[0, 1] : Ef is countable}. By the Mazurkiewicz–Sierpiński theorem [3, 29.19],

the set in (iii) is coanalytic.

To prove (iv) note that a countable set A ⊂ [0, 1] is Gδ if and only if it does not

contain a non-empty and dense-in-itself set (see [4, pages 78, 252, 259, 417]). Moreover

for every A ⊂ [0, 1] we have

A contains a non-empty and dense-in-itself set ⇐⇒

∃{an : n ∈ N} ⊂ A ∀n, r ∈ N ∃k ∈ N (0 < |an − ak| <
1

r + 1
).

See that the set

{(f, (xn)) ∈ C[0, 1]× [0, 1]N : ∀n, r ∈ N ∃k ∈ N (0 < |xn − xk| <
1

r + 1
∧ (f, xn) /∈ E)}

is Borel. Hence the set

{f ∈ C[0, 1] : ND(f) contains a non-empty and dense-in-itself set } =

{f ∈ C[0, 1] : ∃(xn) ∈ [0, 1]N ∀n, r ∈ N ∃k ∈ N (0 < |xn − xk| <
1

r + 1
∧ (f, xn) /∈ E)}

is analytic. From this and (iii) we obtain that the set in (iv) is coanalytic.

Now we will describe the idea of another proof of Theorem 1. To do this we define

a special class of trees on N. For s, t ∈ N<N such that |s| = |t| and for n ∈ N we define

s+ t and ns in the following natural way: (s+ t)(k) = s(k)+ t(k) and (ns)(k) = ns(k)
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for k ∈ N, k < |s|. Analogously we define α+β and nα for infinite sequences α, β ∈ NN.

Then we define H : Tr → Tr by

H(T ) = {2s+ ε : s ∈ T and ε ∈ {0, 1}|s|}, T ∈ Tr.

Put Tr∗ = H(Tr). Since T ∈ Tr∗ if and only if ∀s ∈ N<N [2s ∈ T ⇒ ∀ε ∈

{0, 1}|s| (2s+ ε ∈ T )], then Tr∗ is a closed subset of Tr. Hence it is a Polish subspace

of Tr and the trees from Tr∗ have the property

[T ] 6= ∅ ⇐⇒ [T ] contains a perfect set.

The implication ”⇐” is obvious. To prove ”⇒” suppose that T ∈ Tr∗ is such that

[T ] 6= ∅. Then there exists a tree S ∈ Tr such that T = H(S). Let x ∈ [T ]. Then

x|n = 2s(n) + ε(n) where s(n) ∈ S and ε(n) ∈ {0, 1}n for every n ∈ N. Let y ∈ NN be

such that y|n = s(n) for each n ∈ N. Then y ∈ [S] and for every z ∈ {0, 1}N we have

2y + z ∈ [T ]. This shows that [T ] is a perfect set, since it is closed (see [3, 2.4]) and

for every n ∈ N the set [T ] contains, together with a point x, a point 2x+ z such that

z|n = ε(n), z(n) = 1− ε(n+1)(n).

Let WF ∗ = WF ∩ Tr∗. Fix s 7→ 〈s〉, a bijection between N<N and N. Note that H

is a Borel map as the pointwise limit of a sequence of continuous maps Hk : Tr → Tr

defined by

Hk(T ) = {2s+ ε : s ∈ T , ε ∈ {0, 1}|s| and 〈s〉 < k}, k ∈ N.

Since the notions of Π1
1–completeness and Borel Π1

1–completeness coincide (see [2]),

then WF ∗ is Π1
1–complete.

Now we modify a little bit the proof of the Mazurkiewicz theorem from [3] to obtain

Theorem 1. Let T 7→ ΦT be a continuous map from Tr to C[0, 1] described in [3,

33.9] which witnesses that DIFF is Π1
1–complete (this map is similar to our function

T 7→ FT defined above, but in its construction we do not use a parameter d). Let

T ∈ Tr. With every sequence α ∈ [T ] there is attached a point xα such that there

is no finite derivative Φ′T (xα). Moreover, for distinct sequences α, β ∈ [T ] we have
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xα 6= xβ. On the other hand if [T ] = ∅, then ΦT has a derivative at every point. Then

for T ∈ Tr∗ we have

[T ] 6= ∅ ⇐⇒ |{x ∈ [0, 1] : Φ′T (x) does not exist}| > ω.

Hence the function T 7→ ΦT on Tr∗ has the same properties as the function T 7→ FT

from Theorem 1.

Many examples of Π1
1–complete sets (included the most of such examples from [3])

have a following form

{objects with no singularity points}

(cf [1]). Examples of objects are the following: continuous functions on [0, 1], con-

tinuous function on T (where T = R/Z) or homeomorphisms of a compact space,

and singularity points can be respectively: points with no finite derivative (cf. the

Mazurkiewicz theorem), points at which Fourier series are not convergent (cf. [3,

33.13]) or points with infinite orbits (cf. [3, 33.20]). The standard way of proving the

Π1
1-completeness of coanalytic sets of this type is to find a suitable map G from Tr to

a given space with the following properties:

(a) if [T ] = ∅, then G(T ) has no singularity points;

(b) if α ∈ [T ], then there is xα such that it is a singularity point of G(T );

(c) if α, β ∈ [T ] are distinct sequences, then xα and xβ are also distinct.

Note that the condition (c) is not necessary for proving Π1
1–completeness, but if it

holds, then G has the property

∀T ∈ Tr∗ ([T ] 6= ∅ ⇐⇒ G(T ) has uncoutably many singularity points).

At the end we give one application of this reasoning. The analysis of the proof of

Theorem [3, 33.11] give us the following

Corollary 4. The set {(fn) ∈ (C[0, 1])N : (fn) converges pointwise on cocountable

subset of [0, 1]} is Π1
1–complete.



CONTINUOUS FUNCTIONS DIFFERENTIABLE ON COCOUNTABLE SETS 9

Proof. It is enough to see that the given set is coanalytic. It is known [3, 23.18] that

the set

E = {((fn), x) ∈ (C[0, 1])N × [0, 1] : (fn(x)) is not pointwise convergent}

is Borel. Let E(fn) = {x ∈ [0, 1] : ((fn), x) ∈ E}. Then by the Mazurkiewicz–Sierpiński

theorem [3, 29.19], the set

{(fn) ∈ (C[0, 1])N : (fn) converges pointwise on cocountable subset of [0, 1]} =

= {(fn) ∈ (C[0, 1])N : E(fn) is countable}

is coanalytic.
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