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Abstract. Let I⊗J stand for the Fubini-type product of σ-ideals I,J ⊂ P(R).
We consider mixed measure-category σ-ideals M⊗N and N ⊗M (called the
Mendez σ-ideals), and study some features of their structure. We show that
M⊗N and N ⊗M are not invariant with respect to nonzero rotations. Using
Fremlin’s results, we describe nice Borel bases of M⊗N, N ⊗M, {∅} ⊗N and
{∅} ⊗M. The rest of the paper is devoted to uniform versions of the Nikodym
theorem and the Lusin theorem for Borel functions of two variables.

1. Some σ-ideals on the plane

The monograph of Oxtoby [15] presents several similarities and differ-
ences between two families of small subsets of the real line that form σ-ideals:
the family N of Lebesgue null sets (i.e. sets of Lebesgue measure zero) and the
family M of meager sets (i.e. sets of the first Baire category). Oxtoby contin-
ues these studies for the σ-algebras associated with N and M (they consist of
Lebesgue measurable sets and of sets with the Baire property, respectively)
and real-valued functions measurable with respect to these σ-algebras. The
analogous investigations can be conducted for subsets of R2 or Rk with k > 2.
Interesting properties arise when one examines small sections of small plane
sets – this leads to the theorems of Fubini and of Kuratowski and Ulam.

A new idea appears when one considers plane sets whose almost all sec-
tions in one sense are small. Families (in fact σ-ideals) of such plane sets
fulfilling the “Fubini-type mixed condition” were investigated by Mendez
[13], [14]. These objects have some interesting properties and applications;
see e.g. [6], [7], [8], [9], [2], [3], [4]. We show that detailed studies of the
structure of the Mendez σ-ideals yield new properties of plane Borel sets and
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Borel functions of two variables. Some results of [8] and [1] are included, we
derive from them several consequences. We also consider nice bases of the σ-
ideals of plane sets whose all sections are meager (of measure zero), and we
establish related consequences for Borel functions.

Let N = {1,2, . . .}. By4 we denote the operation of symmetric difference
of sets, and by λ (respectively, λk) – the one-dimensional (k-dimensional)
Lebesgue measure. Throghout the paper X will stand for R or any non-
degenerate subinterval of R. The σ-algebra of all Borel subsets of X2 will
be written as B. For a σ-ideal J ⊂ P(X) and a set B ⊂ X2, we denote
ΦJ(B) :=

{
x ∈ X : B(x) 6∈ J

}
where B(x) :=

{
y ∈ X : (x, y) ∈ B

}
is the

section of B generated by x ∈ X. For a function f : X2 → R and x ∈ X,
we put fx(y) := f(x, y), y ∈ X. If I, J ⊂ P(X) are σ-ideals, we define

I⊗ J := {A ⊂ X2 : (∃B ∈ B)
(
A ⊂ B and ΦJ(B) ∈ I

)}.

This is a σ-ideal of subsets of X2. In particular, N ⊗N and M⊗M pro-
duce exactly the σ-ideals of Lebesgue null sets and of meager sets in X2,
cf. [15, Chs. 14 and 15]. If we do not use a Borel cover B in the defini-
tion of I⊗ J, some patological sets appear in N ⊗N and in M⊗M (cf. [15,
Theorems 14.4 and 15.5], [17, Section 4]), and thus we would obtain essen-
tially larger σ-ideals. The mixed product σ-ideals M⊗N and N⊗M will be
called the Mendez σ-ideals. We also study the σ-ideals N∗ := {∅} ⊗N and
M∗ := {∅} ⊗M; they were considered for instance in [6].

Let us quote two important properties of the Mendez σ-ideals. From the
first one it follows that these σ-ideals are mutually incomparable (with re-
spect to inclusion) and also incomparable with M⊗M and N⊗N. Namely,
Mendez [13] observed that if A,B are disjoint Borel sets such that A ∪B
= X, A ∈ M, B ∈ N (the celebrated decomposition of the interval X into
two small sets, cf. [15, Theorem 1.6]) then A×X ∈ M⊗N, B ×X ∈ N⊗M

and C ∈ (M⊗M) ∩ (N ⊗N), D ∈ (M⊗N) ∩ (N ⊗M) where C := (A×B)
∪ (B ×A), D := (A×A) ∪ (B ×B). This yields the new decompositions
(A×X) ∪ (B ×X) and C ∪D of X2 into two small sets. The second prop-
erty is due to Fremlin [7, 8G(a)] and it says that any disjoint family of Borel
subsets of X2 that are not in N⊗M (respectively, M⊗N) is countable. This
is the so called countable chain condition useful in several kinds of investiga-
tions.

We will show that the Mendez σ-ideals on R2 are not invariant under
nonzero rotations. This answers a question of T. Natkaniec (oral communi-
cation). In fact we will obtain a more general result.

Theorem 1. Let I and J be σ-ideals of subsets of R such that I is invari-
ant with respect to affine mappings, J is invariant with respect to translations,
and there is a Borel set in I \ J. Then for each α ∈ (0, π/2] there is a Borel
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set E ∈ I⊗ J such that ϕα(E) 6∈ I⊗ J where ϕα stands for the rotation of R2

by angle α around the point (0, 0).
Proof. Fix a Borel set D ∈ I \ J and an angle α ∈ (0, π/2]. Let D∗ :=

pr1 (ϕ−α

({0}×D
)
) where pr1 is the projection onto the first axis. If α = π/2

then D∗ = D, and if α ∈ (0, π/2) then D∗ is the image of D under the re-
spective affine function from R to R. Hence D∗ is Borel and D∗ ∈ I. Put
E := D∗ × R. Then E ∈ I⊗ J. Consider E∗ := ϕα(E). Observe that E∗ is
the union of all straight lines parallel to y = x tan (π/2− α) and intersect-
ing {0} ×D. Hence each section E∗(x), x ∈ R, is of the form D + t for some
t ∈ R. So, by the assumption, E∗(x) 6∈ J. Hence E∗ 6∈ I⊗ J. ¤

In Section 2 we give a survey of regularity properties of σ-ideals N⊗M,
M∗, M⊗N and N∗. We apply them (in Sections 3 and 4) to discuss uniform
and almost-uniform versions of Nikodym-type and Lusin-type theorems for
sections of a Borel function of two variables.

2. Regularity properties

In this section we collect some known results concerning the structure
of M∗ and N∗, and of the Mendez σ-ideals. It is a simple observation that
every Lebesgue null set is contained in a Lebesgue null set of type Gδ, and
every meager set is contained in a meager set of type Fσ. For a σ-ideal I, a
subfamily F ⊂ I is called a base of I if for every A ∈ I we can find B ∈ F such
that A ⊂ B. By definition, every set A from N ⊗M is contained in a Borel
set B from this σ-ideal. But of which (possibly low) Borel level is B? This
will be derived from Proposition 2. Thus we will describe a nice Borel base
of N ⊗M. In general, by a nice base of a σ-ideal I on the plane we mean a
base of I consisting of Borel sets of possibly low level or consisting of Borel
sets whose sections are of possibly low level.

We need the following result due to Fremlin. By cl(·) we denote the
closure operation in X2.

Proposition 2 (cf. [8], 3F). The σ-ideal N ⊗M is generated by the
family

{C ×X : C ∈ N} ∪ {
D ⊂ X2 : (∀x ∈ X)(clD)(x) is nowhere dense

}
.

Corollary 3. For each set A ∈ N⊗M there exist a set C ∈ N (of type
Gδ) and an Fσ set F ⊂ X2 with meager sections such that A ⊂ (C ×X)∪F .

Another question is whether a Borel subset of X2 can differ (with respect
to the symmetric difference) from a Borel set, of a possibly low Borel level,
by a set from N ⊗M. (This question, in the case of the difference by a null
set or by a meager set, has an easy answer, via the known characterization
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of the Lebesgue measurable sets and the definition of sets with the Baire
property, cf. [15, Chs. 3 and 4].)

Proposition 4 [1, Proposition 2.1]. For every Borel set B ⊂ X2 and a
fixed base (Un)n∈N of open subsets of X, there is a sequence (Fn)n∈N of Fσ

subsets of X such that B4⋃
n∈N(Fn × Un) ∈ N ⊗M.

Proof. (Sketch.) We have ΦM(B) =
⋃

n∈NAn where An :=
{

x ∈ X :
Un \B(x) ∈ M

}
, n ∈ N. The sets An, n ∈ N, are Borel [11, 22.22]. For

each n ∈ N choose an Fσ set Fn ⊂ An such that λ(An \ Fn) = 0. Put
B∗ :=

⋃
n∈N(Fn×Un). We have (B∗ \B)(x) ∈ M for each x ∈ X. It remains

to show that B \B∗ ∈ N⊗M. To this end consider A :=
⋃

n∈N(An \ Fn) be-
longing to N. Next observe that (B \B∗)(x) ∈ M for each x ∈ X \A. ¤

Corollary 5. For every Borel set B ⊂ X2 there are an Fσ set D ⊂ X2

and C ∈ N such that B ⊂ (C ×X) ∪D and (D \B)(x) ∈ M for each x ∈
X \ C.

Proof. By Proposition 4 we find open sets Un ⊂ X, n ∈ N, and Fσ sets
Fn ⊂ X, n ∈ N, such that for B∗ :=

⋃
n∈N(Fn×Un) we have B4B∗ ∈ N⊗M.

By Corollary 3 we can choose a set C ∈ N and an Fσ set F ⊂ X2 with meager
sections such that B4B∗ ⊂ (C ×X) ∪ F . Put D := B∗ ∪ F . Then D is as
desired (observe that (D \B)(x) ⊂ F (x) for each x ∈ X \ C). ¤

An equivalent formulation of Corollary 5 with an inner approximation of
B can be obtained when we apply Corollary 5 to X \B and then consider
complements. Namely, we then find a Gδ set E ⊂ X2 and C ∈ N such that(
(X \ C)×X

) ∩ E ⊂ B and (B \ E)(x) ∈ M for each x ∈ X \ C.
By the definition of M∗, each set from M∗ can be covered by a Borel set

D ⊂ X2 such that each section D(x), x ∈ X, is meager. However, M∗ does
not have a base that consists of Borel sets of a bounded level (see [6, p. 565]).
On the other hand, Fremlin established a nice base of M∗. His result was
included to [5].

Proposition 6 [5, Lemma 1.7]. (a) For each set A ∈M∗ there is a Borel
set F ⊃ A with all sections meager of type Fσ.

(b) For every Borel set B ⊂ X2 there is a Borel set W ⊂ X2 such that
for each x ∈ X, W (x) is open and B4W ∈ M∗.

We have been informed that Proposition 6(a) can be also derived from
a general result of Hillard [10]. Next let us consider nice bases of M⊗N
and N∗.

Proposition 7 [1, Lemma 2.3]. Let B ⊂ X2 be a Borel set. The follow-
ing property holds:

(?)
{

for every ε > 0 there exist an open set G ⊂ X2 and a set C ∈ M such
that B ⊂ (C ×X) ∪G and λ

(
(G \B)(x)

)
5 ε for each x ∈ X \ C.

Acta Mathematica Hungarica 126, 2010



BOREL PLANE SETS AND BOREL FUNCTIONS OF TWO VARIABLES 245

Proof. (Sketch.) Taking into account the hierarchies ΣΣΣ0
α, ΠΠΠ0

α, α < ω1,
of Borel sets it suffices to show three facts: property (?) holds for

• every open set B ⊂ X2;
• B =

⋃
m∈NBm provided it holds for Borel sets Bm, m ∈ N;

• B =
⋂

m∈NBm provided it holds for Borel sets Bm, m ∈ N, such that
Bm+1 ⊂ Bm for all m ∈ N. ¤

Corollary 8. For every Borel set B ⊂ X2 there exist a Gδ set D ⊂ X2

and C ∈ M such that B ⊂ (C ×X) ∪D and (D \B)(x) ∈ N for each x ∈
X \ C.

We can also describe a nice base of M⊗N.
Corollary 9. For each set A ∈ M⊗N there exist a set C ∈ M (of type

Fσ) and a Gδ set D ⊂ X2 with Lebesgue null sections such that A ⊂ (C ×X)
∪D.

To obtain a nice base for N∗ we can follow a similar scheme. In fact, this
was done by Fremlin in his result included in [5].

Proposition 10 [5, Lemma 1.7]. Let B ⊂ X2 be a Borel set. Then for
every ε > 0 there is a Borel set G ⊂ X2 such that B ⊂ G and for each x ∈ X,
G(x) is open with λ

(
(G \B)(x)

)
5 ε.

Corollary 11. For each set A ∈ N∗ there is a Borel set H ⊃ A with all
sections of type Gδ and of measure zero.

Note that N∗ does not have a base that consists of Borel sets of a bounded
level (see [6, p. 565]).

3. Uniform versions of the Nikodym theorem

The Nikodym theorem (cf. [15, Theorem 8.1], [12, §32, II], [11, 8.38])
states that every real-valued function with the Baire property, defined on a
Polish space, while restricted to some residual set, is continuous. Consider a
Borel function f : X2 → R. Then all its sections fx are Borel measurable. By
the Nikodym theorem, each section fx restricted to a residual subset Ax of X
is continuous and we may assume that Ax is of type Gδ. We ask whether all
or almost all residual sets Ax can be chosen as the sections B(x) of the same
set B ⊂ X2 of type Gδ. A similar question is asked when we derive from the
Lusin theorem that the sections fx, x ∈ X, restricted to sets of big measure
are continuous (this question is discussed in the next section). The phrase
“almost all” will be meant in the sense of the σ-ideals M, N and M ∩N.

Proposition 12. Let f : X2 → R have the Baire property. Then there
exist an Fσ set F ⊂ X2 and C ∈ M such that F (x) ∈ M for all x ∈ X \ C
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and f|(((X \ C)×X
) \ F) is continuous. In particular, fx

∣∣(X \ F (x)
)

is
continuous for all x ∈ X \ C.

Proof. By the Nikodym theorem pick an Fσ meager set F ⊂ X2 such
that the restriction f |(X2 \ F ) is continuous. Next, using the Kuratowski–
Ulam theorem pick a set C ∈M such that F (x) ∈M for all x ∈ X \C. Plainly
f|(((X \ C)×X

) \ F) is continuous. ¤
It is natural to ask whether, for a Borel function f : X2 → R, the above

statement remains true if “C ∈ M” is replaced by “C ∈ N”. We do not know
an answer if the continuity of f|(((X \ C)×X

) \ F) is required. However,
the answer is “yes” if we require only the continuity of all sections fx

∣∣(X

\ F (x)
)
, x ∈ X \C. A real-valued function on a metric space is called Borel

measurable of class 1 if all its preimages of open sets are of type Fσ in the
domain, or equivalently, if it is a pointwise limit of a sequence of continuous
functions.

Theorem 13. Let f : X2 → R be a Borel function. Then there is a set
D ∈ N⊗M such that h := f |(X2 \D) is Borel measurable of class 1 with N-
almost all sections hx continuous. Moreover, there exist an Fσ set F ⊂ X2

and C ∈ N such that F (x) ∈M for all x ∈ X \C, and g := f|(((X \C)×X
)

\ F) is Borel measurable of class 1 with gx = fx

∣∣(X \ F (x)
)

continuous for
all x ∈ X \ C.

Proof. Let (Vm)m∈N and (Um)m∈N be bases of open sets in R and in X,
respectively. Then using Proposition 4 to the sets Bm := f−1(Vm) for each
m ∈ N, we find sequences (Fmn)n∈N, m ∈ N, of Fσ subsets of X such that

Dm := Bm4
⋃

n∈N
(Fmn × Un) ∈ N ⊗M.

Then D :=
⋃

m∈NDm ∈ N ⊗M. By Corollary 5 we find an Fσ set F ⊂ X2

and C ∈ N such that D ⊂ (C ×X) ∪ F and F (x) ∈ M for each x ∈ X \ C.
To prove that h is Borel measurable of class 1 we will show that the

preimage h−1(Vm) is of type Fσ in X2 \D for each m ∈ N. This implies
that g−1(Vm) is of type Fσ in dom(g) ⊂ X2 \D, and so g would be Borel
measurable of class 1. Thus fix m ∈ N. Then

f−1(Vm) = Bm =
⋃

n∈N
(Fmn × Un)4Dm.

Consequently, h−1(Vm) = f−1(Vm) \D =
⋃

n∈N(Fmn ×Un) \D is of type Fσ

in X2 \D.
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Now, fix x ∈ X \C. We will prove the continuity of hx = fx

∣∣(X \D(x)
)

(since D(x) ⊂ F (x), this implies the continuity of gx = fx

∣∣(X \ F (x)
)
). For

a fixed m ∈ N we have

h−1
x (Vm) = f−1

x (Vm) \D(x) = Bm(x) \D(x)

=
(

Dm(x)4
⋃

n∈N
(Fmn × Un)(x)

)
\D(x) =

⋃
{Un : x ∈ Fmn, n ∈ N} \D(x)

and this set is open in X \D(x). ¤
We can connect Proposition 12 with Theorem 13 to obtain the respective

result for sections fx of a Borel function f : X2 → R where an exceptional
set C is in M ∩N but F has a bit more complicated Borel structure.

Corollary 14. Let f : X2 → R be a Borel function. Then there exist
a set C ∈ M ∩N and a Borel set F ⊂ (X \ C)×X (of type Fσδ and Gδσ)
such that for all x ∈ X \C, the section F (x) is meager of type Fσ and fx

∣∣(X

\ F (x)
)

is continuous.

Proof. By Proposition 12, pick an Fσ set F1 ⊂ X2 and a set C1 ∈ M

such that F1(x) ∈ M and fx

∣∣(X \ F1(x)
)

is continuous for each x ∈ X \C1.
Next, by Theorem 13, pick an Fσ set F2 ⊂ X2 and a set C2 ∈ N such that
F2(x) ∈ M and fx

∣∣(X \ F2(x)
)

is continuous for each x ∈ X \ C2. We may
enlarge C1 and C2 to be of types Fσ and Gδ, respectively. Put C := C1 ∩C2

and
F := (F1 ∩

(
(X \ C1)×X

)
) ∪ (F2 ∩

(
(C1 \ C2)×X

)
).

Clearly C ∈ M ∩N and F ⊂ (X \ C)×X. It is not hard to check that F is
of type Fσδ and Gδσ. Fix x ∈ X \ C. If x ∈ X \ C1 then F (x) = F1(x), and
if x ∈ C1 \ C2 then F (x) = F2(x). So, the assertion follows. ¤

We do not know whether we can use F of type Fσ in this corollary. An-
other question is how much we can decrease an exceptional set C. More
precisely, we do not know how much thinner a σ-ideal I can be used with
C ∈ I. If we want F to be a Borel set of bounded level with meager sections
for all x 6∈ C, the following theorem shows that the trivial σ-ideal I = {∅} is
bad.

Theorem 15. Let 2 5 α < ω1. There is a Borel function f : X2 → R
such that for every set F in the Borel class ΣΣΣ0

α(X2) with F (x) ∈ M for all
x ∈ X we can find x0 ∈ X such that fx0

∣∣(X \ F (x0)
)

is not continuous.

Proof. We follow some ideas from [6, Lemma 2.3]. Let U ∈ ΣΣΣ0
α(X3) be

a universal set for ΣΣΣ0
α(X2), cf. [11, 22.3]. Put A :=

{
(x, y) ∈ X2 : (x, x, y)
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6∈ U
}

. Then A ∈ ΠΠΠ0
α(X2). For each F ∈ ΣΣΣ0

α(X2) we can find x ∈ X such
that F = U(x), hence

F (x) =
(
U(x)

)
(x) = U(x, x) = X \A(x).

Put B :=
{

x ∈ X : A(x) 6∈ M
}

. Then B is a Borel set ([11, 22.22]). By [11,
18.6] applied with the σ-ideal M we can find a Borel function g : B → X

with g(x) ∈ A(x) for all x ∈ B. Let f : X2 → R stand for the characteris-
tic function of the graph of g. Let F ∈ ΣΣΣ0

α(X2) and F (x) ∈ M for all x ∈ X.
Pick x0 ∈ X such that F (x0) = X \A(x0). Then x0 ∈ B. Suppose that
h := fx0

∣∣(X \ F (x0)
)

is continuous. Then h
(
g(x0)

)
= 1 and h(y) = 0 for

the remaining y ∈ X \ F (x0). Hence g(x0) should be an isolated point of
X \ F (x0) = A(x0) which is impossible since A(x0) is residual in X. ¤

On the other hand, we have the following positive result

Theorem 16. Let f : X2 → R be a Borel function. Then there is a Borel
set F ⊂ X2 such that F (x) ∈ M, F (x) is of type Fσ, and fx

∣∣(X \ F (x)
)

is
continuous for all x ∈ X.

Proof. Let (Vm)m∈N be a base of open sets in R. Put Bm := f−1(Vm),
m ∈ N. By Proposition 6(b) it follows that for every Borel set Bm we can
find a Borel set Wm ⊂ X2 such that for each x ∈ X, Wm(x) is open and
Am ∈ M∗ where Am := Bm4Wm. Put A :=

⋃
m∈NAm. It is easy to show

that fx

∣∣(X \A(x)
)

is continuous for all x ∈ X (cf. [15, Theorem 8.1]). By
Proposition 6(a) pick a Borel set F ⊃ A with all sections meager of type Fσ.
Then fx

∣∣(X \ F (x)
)

is continuous for all x ∈ X. ¤

4. Uniform versions of the Lusin theorem

Let us start with the following observation.

Proposition 17. Let f : X2 → R be a Borel function. Then for every
ε > 0 there exist open sets G ⊂ X2 and C ⊂ X such that f|(((X \C)×X

)

\G) is continuous, λ(C) 5 ε and λ
(
G(x)

)
5 ε for all x ∈ X \ C.

Proof. By the Lusin theorem (cf. [15, Theorem 8.2], [11, 17.12]), for
ε > 0 pick an open set G ⊂ X2 such that λ2(G) 5 ε2 and f |(X2 \G) is
continuous. Let C := {x ∈ X : λ

(
G(x)

)
> ε}. Then C is open (cf. [11,

22.25]). Plainly f|(((X \ C)×X
) \G) is continuous and λ

(
G(x)

)
5 ε for
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all x ∈ X \ C. To show that λ(C) 5 ε we use the Fubini theorem and obtain

ε2 = λ2(G) =
∫

X
λ
(
G(x)

)
dx

=
∫

C
λ
(
G(x)

)
dx +

∫

X\C
λ
(
G(x)

)
dx = ελ(C). ¤

We propose a modified version of Proposition 17 where an exceptional
set C is meager. We extract a basic idea (method) contained in the proof of
Lusin’s theorem (cf. [15, Theorem 8.2]); this is formulated in the following
(rather obvious) lemma.

Lemma 18. Let (Vm)m∈N be a base of open sets in R. For a measurable
function f : E → R defined on a measurable set E ⊂ Rk let Bm := f−1(Vm),
m ∈ N. If for every m ∈ N, Gm and G∗

m ⊂ Rk are open sets such that
Bm ⊂ Gm and E \Bm ⊂ G∗

m, then for the open set G :=
⋃

m∈N(Gm ∩G∗
m)

the restriction f |(E \G) is continuous. Moreover, if ε > 0 and Gm, G∗
m are

chosen so that λk(Gm \Bm) 5 ε/2m+1 and λk(G∗
m ∩Bm) 5 ε/2m+1 for all

m ∈ N, then λk(G) 5 ε.

Theorem 19. Let f : X2 → R be a Borel function. Then for every ε > 0
there is an open set G ⊂ X2 and C ∈ M such that f|(((X \C)×X

) \G) is
continuous and λ

(
G(x)

)
5 ε for all x ∈ X \ C.

Proof. Fix a countable base (Vm)m∈N of open sets in R. Put Bm :=
f−1(Vm), m ∈ N, and apply Proposition 7 to every set Bm with ε/2m+1.
We find an open set Gm ⊂ X2 and a set Cm ∈ M such that Bm ⊂ (Cm ×
X) ∪Gm and λ

(
(Gm \Bm)(x)

)
5 ε/2m+1 for each x ∈ X \ Cm. When we

repeat it for X2 \Bm, we find an open set G∗
m ⊂ X2 and a set C∗

m ∈ M such
that X2 \Bm ⊂ (C∗

m ×X) ∪G∗
m and λ

(
(G∗

m ∩Bm)(x)
)

5 ε/2m+1 for each
x ∈ X \ C∗

m. Put G :=
⋃

m∈N(Gm ∩G∗
m) and C :=

⋃
m∈N(Cm ∪ C∗

m). Then
G is open and C ∈ M. Let X0 := (X \ C)×X. Applying the first assertion
of Lemma 18 to the function f |X0 we have that f |(X0 \G) is continuous.
Then fix x ∈ X \C. Applying Lemma 18 to fx : X → R with Bm, Gm, G∗

m,
G replaced by Bm(x), Gm(x), G∗

m(x), G(x), we have λ
(
G(x)

)
5 ε. ¤

Corollary 20. For every Borel function f : X2 → R there is a set D ∈
M⊗N such that f |(X2 \D) is Borel measurable of class 1.

Proof. We apply Theorem 19 with ε := 1/k, k ∈ N, and obtain Ck ∈ M

and an open set Gk ⊂ X2 such that gk := f|(((X \ Ck)×X
) \Gk) is con-
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tinuous and λ
(
Gk(x)

)
5 1/k for all x ∈ X \ Ck. Define C :=

⋃
k∈NCk,

G :=
⋂

k∈NGk and D := (C ×X) ∪G. Then D ∈ M⊗N and

X2 \D =
(
(X \ C)×X

) \G =
⋃

k∈N

(
(X \ C)×X

) \Gk.

Since
(
(X \C)×X

) \Gk is closed in X2 \D, we can (by the Tietze theorem)
extend gk to a continuous function fk : X2 \D → R. Then fk → f |(X2 \D)
and so f |(X2 \D) is Borel measurable of class 1. ¤

We can connect Proposition 17 with Theorem 19 to obtain the following
analogue of Corollary 14 in which a set G is of type Gδ with open sections.

Corollary 21. Let f : X2 → R be a Borel function. Then for every
ε > 0 there exist a set C ∈ M of type Fσ with λ(C) 5 ε and a Gδ set G
⊂ (X \ C)×X such that for all x ∈ X \ C, the section G(x) is open with
λ
(
G(x)

)
5 ε and f|(((X \ C)×X

) \G) is continuous.

Proof. By Proposition 17, pick open sets C1 ⊂ X and G1 ⊂ X2 such
that λ(C1) 5 ε, f|(((X \ C1)×X

) \G1) is continuous and λ
(
G1(x)

)
5 ε

for all x ∈ X \ C1. Next, by Theorem 13, pick an open set G2 ⊂ X2 and a
set C2 ∈ M of type Fσ such that f|(((X \C2)×X

) \G2) is continuous and
λ
(
G2(x)

)
5 ε for all x ∈ X \ C2. Put C := C1 ∩ C2 and

G := (G1 ∩
(
(X \ C1)×X

)
) ∪ (G2 ∩

(
(C1 \ C2)×X

)
).

Clearly C ∈ M, λ(C) 5 ε, and G ⊂ (X \C)×X is a Gδ set. Fix x ∈ X \C.
If x ∈ X \C1 then G(x) = G1(x), and if x ∈ C1 \C2 then G(x) = G2(x). So,
the assertion follows. ¤

Having Corollary 21, it is interesting to know how much one can decrease
an exceptional set C when G is required merely Borel with open sections of
measure 5 ε. The answer is analogous to the respective fact obtained in the
category case. First we mimic the method applied in the proof of Theorem 15
to show that an exceptional set C, for the respectively chosen f and every G
of bounded Borel level with all sections of measure 5 ε, should be nonempty.

Theorem 22. Let 1 5 α < ω1, X := [0, 1] and ε := 1/2. There is a Borel
function f : X2 → R such that for every set G ∈ ΣΣΣ0

α(X2) with λ
(
G(x)

)
5 ε

for all x ∈ X there exists x0 ∈ X such that fx0

∣∣(X \G(x0)
)

is not continu-
ous.

Proof. Define a set A ⊂ X2 as in the in the proof of Theorem 15. Put
B := {x ∈ X : λ

(
A(x)

)
= ε}. Then B is a Borel set ([11, 22.25]). We will

define a Borel subset A∗ ⊂ A of positive measure with A∗(x) dense in itself,
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for each x ∈ B (in fact, each portion of A∗(x), x ∈ B, will be of positive
measure). This construction is due to RecÃlaw [16]. Fix a base (Vn)n∈N of
open sets in X. Then every set

Wn := {x ∈ X : λ(
(
A ∩ (X × Vn)

)
(x)) = 0}, n ∈ N,

is Borel ([11, 22.25]). We claim that the Borel set A∗ := A \⋃
n∈N(Wn × Vn)

is as desired. Indeed, fix x ∈ B and put Mx := {n ∈ N : λ
(
A(x)∩Vn

)
= 0}.

By the definition of A∗ we have

A∗(x) = A(x) \
⋃

n∈Mx

(
Vn ∩A(x)

)
and λ

( ⋃

n∈Mx

Vn ∩A(x)
)

= 0.

Hence λ
(
A∗(x)

)
= λ

(
A(x)

)
> 0. Now, consider any set Vm such that

Vm∩A∗(x) 6= ∅. The case λ
(
Vm∩A(x)

)
= 0 is impossible since then m ∈ Mx.

Hence λ
(
Vm ∩A(x)

)
> 0 and so λ

(
Vm ∩A∗(x)

)
> 0.

By [11, 18.6] applied with the σ-ideal N we can find a Borel function
g : B → X with g(x) ∈ A∗(x) for all x ∈ B. Let f : X2 → R stand for the
characteristic function of the graph of g. Let G ∈ ΣΣΣ0

α(X2) be such that
λ
(
G(x)

)
5 ε for all x ∈ X. Pick x0 ∈ X such that G(x0) = X \A(x0). Then

λ
(
A(x0)

)
= 1− λ

(
G(x0)

)
= ε. Hence x0 ∈ B. Since A∗(x0) is dense in it-

self, fx0 |A∗(x0) is discontinuous at g(x0) and fx0 |A(x0) = fx0

∣∣(X \G(x0)
)

remains discontinuous at g(x0). ¤
In particular, from Theorem 22 (for α = 1) it follows that an exceptional

set C in Proposition 17 can be nonempty. We also have the following positive
result.

Theorem 23. Let f : X2 → R be a Borel function. Then for every ε > 0
there is a Borel set G ⊂ X2 such that G(x) is open, λ

(
G(x)

)
5 ε and fx

∣∣(X

\G(x)
)

is continuous for all x ∈ X.

Proof. Fix a countable base (Vm)m∈N of open sets in R. For every
m ∈ N put Bm := f−1(Vm), and by Proposition 10 pick Borel sets Gm, G∗

m

⊂ X2 such that Bm ⊂ Gm, X \Bm ⊂ G∗
m and Gm(x), G∗

m(x) are open
with λ

(
(Gm \Bm)(x)

)
5 ε/2m+1, λ

(
(G∗

m∩Bm)(x)
)

5 ε/2m+1 for all x ∈ X.
Since f−1

x (Vm) = B(x), we may apply Lemma 18 to fx for every fixed x ∈ X.
Thus for G :=

⋃
m∈N(Gm ∩G∗

m) we obtain the assertion. ¤

Acknowledgements. We would like to thank Tomek Natkaniec and
Irek RecÃlaw for useful correspondence. We are also grateful to the referee for
remarks that helped us to improve the paper.

Acta Mathematica Hungarica 126, 2010



252 M. BALCERZAK and S. GÃLA̧B: BOREL PLANE SETS AND BOREL FUNCTIONS . . .

References

[1] M. Balcerzak, Some properties of ideals of sets in Polish spaces, habilitation thesis,
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