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Abstract. We present the method of constructing algebras and lin-

ear spaces of 2c generators using independent Bernstein sets. As an

application we obtain large algebras of special functions: (i) Strongly

everywhere surjective functions which are not perfectly everywhere sur-

jective. (ii) Nowhere continuous Darboux functions. (iii) Nowhere con-

tinuous compact to compact functions. (iv) Functions which are contin-

uous precisely on a fixed closed proper subset of R. Most conclusions

obtained in this paper are improvements of some already known results.

1. Introduction and notation

Recently, looking for large algebraic structures (infinite dimensional vec-

tor spaces, closed infinite dimensional vector spaces, algebras) of functions

on R or C that have certain properties has become a trend in Mathematical

Analysis. A nice result of this sort is that of Rodriguez-Piazza (see [16])

which says that every separable Banach space can be isometrically embed-

ded into a space X ⊆ C[0, 1] consisting of nowhere differentiable functions

and zero.

Let κ be a cardinal number. Let us recall that the set M of functions

satisfying some special property is called κ-lineable if M ∪ {0} contains a

vector space of dimension κ, and is κ-spaceable if M ∪{0} contains a closed
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(in some given space X ⊇ M) vector space of dimension κ. This notion of

lineability was coined by Gurariy and first introduced in [3].

One can go further and not just consider linear spaces but, instead, larger

or more complex structures. For instance, in [2] the authors showed that

there exists an uncountably generated algebra every non-zero element of

which is an everywhere surjective function on C. More in [10] it was shown

that there exists an c-generated algebra every non-zero element of which is

a perfectly everywhere surjective function on C (c denotes the cardinality of

R).

The notion of algebrability has its origin in works by Aron, Pérez-Garćıa

and Seoane-Sepúlveda [4, 5] and the following is a slightly simplified version

of their definition.

Definition 1. [4, 5] Let L be an algebra. A set A ⊆ L is said to be β-

algebrable if there exists an algebra B so that B ⊆ A∪{0} and card(Z) = β,

where β is cardinal number and Z is a minimal system of generators of B.

Here, by Z = {zα : α ∈ Λ} is a minimal system of generators of B, we mean

that B = A(Z) is the algebra generated by Z, and for every α0 ∈ Λ, zα0 /∈

A(Z\{zα0}). We also say that A is algebrable if A is β-algebrable for some

infinite β.

Remark 2. • Notice that if Z is a minimal infinite system of gener-

ators of B, then A(Z ′) 6= B for any Z ′ ⊆ B such that card(Z ′) <

card(Z).

• Clearly algebrability implies lineability, but the converse (in general)

does not hold. For instance Garćıa-Pacheco, Palmberg and Seoane-

Sepulv́eda [12] proved that, given any unbounded interval I, the

set of Riemann-integrable functions on I that are not Lebesgue-

integrable is lineable and not algebrable.

Given a cardinality κ, we say that A is a κ-generated free algebra, if there

exists a subset X = {xα : α < κ} of A such that any function f from X
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to some algebra A′, can be uniquely extended to a homomorphism from

A into A′. Then X is called a set of free generators of the algebra A. A

subset X = {xα : α < κ} of a commutative algebra B generates a free

sub-algebra A if and only if for each polynomial P and any xα1 , xα2 , ..., xαn

we have P (xα1 , xα2 , ..., xαn) = 0 if and only if P = 0. Also, let us recall that

X = {xα : α < κ} ⊆ B is a set of free generators of a free algebra A ⊆ B

if and only if the set X̃ of elements of the form xk1α1
xk2α2
· · ·xknαn is linearly

independent and all linear combinations of elements from X̃ are in B ∪{0}.

With this at hand, let us recall the following definition (see [8]).

Definition 3. We say that a subset E of a commutative linear algebra B

is strongly κ-algebrable if there exists a κ-generated free algebra A contained

in E ∪ {0}.

The notion of strong algebrability is essentially stronger than the notion

of algebrability, for instance, c00 is algebrable in c0 but it is not strongly

1-algebrable, [8].

This paper is mainly devoted to the thorough study of the following re-

cently considered classes of functions:

• Perfectly everywhere surjective (PES), strongly everywhere surjec-

tive (SES) and everywhere discontinuous Darboux (EDD) functions;

• Everywhere discontinuous functions that have finitely many values

(EDF) and everywhere discontinuous compact to compact functions

(EDC);

• Functions that are continuous in a fixed closed set C.

These latter classes have been considered in the context of lineability and

algebrability by many authors (see [2, 3, 9, 10, 11, 12]). In particular, in

[10, Theorem 2.6, 2.7, 2.8] it was proved that the set of perfectly everywhere

surjective functions on R is 2c-lineable, the set of strongly everywhere sur-

jective functions on R that are not perfectly everywhere surjective is also

2c-lineable and that the set of perfectly everywhere surjective functions on
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C is c-algebrable. Moreover, in [9] the authors showed that the last set

is 2c-algebrable. In [11] the authors showed that the sets of everywhere

discontinuous Darboux functions and everywhere discontinuous compact to

compact functions are 2c-lineable. Similar results were obtained in [9] where

authors showed that the first set is c-algebrable.

The aim of this paper is to improve all the mentioned results to the higher

(most often the highest possible) level of algebrability. In particular, and

among other results, we shall prove the 2c-algebrability of SES(C)\PES(C)

(Theorem 7), EDD(R) (Theorem 8), EDF(R) and EDC(R) (Theorem 10

and Corollary 11).

The method we use here is based on independent families of Bernstein

sets. This idea was introduced in [8] and [9]. This is a powerful method,

since it allows to prove 2c-algebrability of certain sets of functions from RR or

CC. Here we present a general approach of constructing large linear algebras

using independent Bernstein sets. Then we present several applications of

this method.

We shall use standard set theoretical notions. As usual, ω denotes the

cardinality of N and c the cardinality of R. We will identify each cardinal

number κ with the set of ordinals less than κ, i.e. κ = {ξ : ξ < κ}.

2. Independent families of Bernstein sets

Let X be a nonempty set. For a set A ⊆ X let us denote A0 = X\A and

A1 = A. Let B be a family of subsets of a set X. We say that the family A

is B-independent if and only if Aε11 ∩ ... ∩ Aεnn ∈ B for any distinct Ai ∈ A,

any εi ∈ {0, 1} for i ∈ {1, ..., n} and n ∈ N. We call a family A independent

if and only if it is B-independent for B = P(X)\{∅}.

Note ([7]) that for any set of cardinality κ there is an independent family

of 2κ many subsets of this set. Recall that a subset B of K (= R or C) is

called a Bernstein set if B ∩ P 6= ∅ 6= B0 ∩ P for every perfect subset P

of K. Assume that B is a family of all Bernstein sets in R (or C). We say
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that a family A is an independent family of Bernstein sets provided that

A ⊆ B and A is B-independent. Let {Bα : α < c} be a decomposition of R

into c many disjoint Bernstein sets. Observe that if s ⊆ c with s 6= ∅ and

c\s 6= ∅ then
⋃
α∈s

Bα is a Bernstein set. Let {Nξ : ξ < 2c} be an independent

family in c such that for every ξ1 < ... < ξn < 2c and for any εi ∈ {0, 1}

(i ∈ {1, ..., n}), the set N ε1
ξ1
∩ ... ∩ N εn

ξn
is nonempty and has cardinality c.

That means every Nξ has also cardinality c (to see that such a family exists

we should take an independent family of 2c many sets in c and use the fact

that c = c× c).

We will define an independent family of Bernstein sets of cardinality 2c.

For ξ < 2c put Bξ =
⋃

α∈Nξ
Bα. Then every set Bξ is Bernstein. Note that for

every ξ1 < ... < ξn < 2c and any εi ∈ {0, 1} for i ∈ {1, ..., n} the set

(Bξ1)ε1 ∩ ... ∩ (Bξn)εn =
⋃

α∈Nε1
ξ1
∩...∩Nεn

ξn

Bα

is Bernstein. That means {Bξ : ξ < 2c} is an independent family of Bernstein

sets.

We will be using the following construction of 2c many linearly inde-

pendent functions in almost all theorems in this paper. For α < c, let

gα : Bα → C (or R) be a non-zero function defined on a Bernstein set Bα.

Then for every ξ < 2c let us put

(1) fξ(x) =

gα(x) when x ∈ Bα and α ∈ Nξ

0 otherwise.

Then the family {fξ : ξ < 2c} is linearly independent.

Let P be any non-zero polynomial in n variables without constant term

and let fξ1 , ..., fξn be any functions of the above type. Let us consider the

function P (fξ1 , ..., fξn). Also, let s = (ε1, ..., εn) where εi ∈ {0, 1}, and let

Ps denotes the polynomial in one variable defined by

(2) Ps(x) = P (ε1 · x, ..., εn · x).
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Let us observe here that the function P (fξ1 , ..., fξn)|Bα for any α ∈ N ε1
ξ1
∩

... ∩ N εn
ξn

is of the form P (ε1 · gα, ..., εn · gα) = Ps(gα) for s = (ε1, ..., εn).

Then we have two possibilities:

(i) At least one of the functions Ps(x) for s ∈ {0, 1}n is a non-zero

polynomial in one variable. If Ps is non-zero, where s = (ε1, ..., εn),

then the function P (fξ1 , ..., fξn) is non-zero on the Bernstein set of

the form (Bξ1)ε1 ∩ (Bξ2)ε2 ∩ ... ∩ (Bξn)εn .

(ii) Every function Ps(x) is zero, in which case P (fξ1 , ..., fξn) is the zero

function. Note that this case is possible: simply take P (x1, ..., xn) :=∏
i 6=j

(xi − xj)
∏
k

xk.

Finally spanning the algebra by the functions {fξ : ξ < 2c} and using the

fact that this set is linearly independent we obtain an algebra of 2c many

generators.

3. PES, SES and EDD

Lebesgue was probably the first who exhibited an example of a function

f : R → R with f(I) = R for every non-trivial interval I. This kind of

functions are called everywhere surjective. In this section we will consider

also classes of functions which fulfill more stringent conditions. Let K stand

for the field R or C. A function f : K→ K is called:

• perfectly everywhere surjective if and only if for every perfect set

P ⊆ K, f(P ) = K and write f ∈ PES(K);

• strongly everywhere surjective if and only if it takes every real or

complex value c times on any interval and write f ∈ SES(K).

More we say that f : R → R is an everywhere discontinuous Darboux

function (write f ∈ EDD(R)) if and only if it is nowhere continuous and

maps connected sets to connected sets. In ([9]) Bartoszewicz, G la̧b, Pelle-

grino and Seoane-Sepúlveda showed that set PES(C) is 2c-algebrable. The

following proposition was proved in [9] for K = C, but in the case K = R

the proof also works.
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Proposition 4. [9] Let B ⊆ K be a Bernstein set. There exists a function

f ∈ PES(K) that is 0 on the set B0.

The following theorem comes from [9] and we recall its proof for the

reader’s convenience. It is a good illustration of method of construction of

large algebra using a family of independent Bernstein sets.

Theorem 5. [9] The set PES(C) is 2c-algebrable.

Proof. Let {Bα : α < c} be a decomposition of C into c many disjoint

Bernstein sets. Let {Nξ : ξ < 2c} be an independent family in c. Let us

define for α < c the PES function gα : Bα → C on a Bernstein set Bα as

in Proposition 4. Then for every ξ < 2c let us define fξ as in (1) of Section

2. Then the family {fξ : ξ < 2c} is linearly independent and generates an

algebra of 2c many generators. Since every non-zero polynomial in n complex

variables is onto C, by the results of Section 2 the function P (fξ1 , ..., fξn) is

onto too (or it is equal to 0). That means P (fξ1 , ..., fξn) ∈ PES(C) or it is

zero function and we are done. �

Remark 6. Let X,Y be complete, separable metric spaces without isolated

points. A function φ : X → Y is called Borel isomorphism if φ is bijection,

φ and φ−1 are Borel mappings. By [14, Theorem 15.6] for any such X and

Y there exists Borel isomorphism φ : X → Y.

Let φ : X → C be a Borel isomorphism and let f ∈ PES(C). Let P be

a perfect set in X and y ∈ C. Then φ(P ) is uncountable Borel set, so it

contains a perfect set Q. Since f ∈ PES(C) we have y ∈ f(Q) ⊆ f(φ(P )).

Therefore f ◦ φ : X → C is perfectly everywhere surjective. Moreover note

that if A ⊆ PES(C) ∪ {0} is an algebra, then {f ◦ φ : f ∈ A} is also an

algebra. Finally we obtain that the set of perfectly everywhere surjective

functions from X onto C is 2c-algebrable.
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One can check that PES(C) ⊆ SES(C). Since there are functions that

are strongly but not perfectly everywhere surjective [10, Example 2.3], it

makes sense to consider the size of SES(C)\PES(C).

Theorem 7. The set SES(C)\PES(C) is 2c-algebrable.

Proof. We follow the idea given in [2, Theorem 1.3]. Let (Un)n<ω be a

countable basis of open sets of C. We can define by induction a sequence

(Cn)n<ω of Cantor-like sets such that for every n < ω

(1) Cn is homeomorphic to the Cantor set;

(2) Cn ⊆ Un;

(3) Cn ∩
⋃
k<n

Ck = ∅.

This can be done since Cn’s are nowhere dense so for fixed n < ω there

is an open ball in Un\
⋃
k<n

Ck that contains c many disjoint Cantor-like sets.

Now for every n < ω, by Remark 6, the set of perfectly everywhere surjective

functions on Cn onto C is 2c-algebrable by Theorem 5. Let {fnξ : ξ < 2c}

be generators witnessing that. Let us define for every ξ < 2c a function

gξ : C→ C as follows:

gξ(x) =

f
n
ξ (x) if x ∈ Cn

0 otherwise.

Fix a natural number n. Let P be any non-zero polynomial in k vari-

ables without constant term, and let ξ1 < ξ2 < ... < ξk < 2c. Note that

P (gξ1 , ..., gξk)|Cn = P (fnξ1 , ..., f
n
ξk

)|Cn . Therefore P (gξ1 , ..., gξk)|Cn is perfectly

everywhere surjective on Cn. Hence h := P (gξ1 , ..., gξk) is strongly every-

where surjective, but it does not belong to PES(C), for if we consider any

perfect set D ⊆ C\
⋃
n<ω

Cn then it follows from our construction that h is

constant and equal to 0 on D.

�
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It easy to see that the set PES(R) is not algebrable because f2 /∈ PES(R)

for any f ∈ PES(R). In the positive direction, the same argument as in The-

orem 5 gives us an algebra of everywhere discontinuous Darboux functions.

Indeed, for every non-zero polynomial P in n variables without constant

term, any functions fξ1 , ..., fξn ∈ PES(R) ⊆ EDD(R) and any real numbers

a < b, the image P (fξ1 , ..., fξn)((a, b)) is an union of sets of the type R or

R+ ∪ {0} or R− ∪ {0}, so it is connected. Hence the following holds.

Theorem 8. The set EDD(R) is 2c-algebrable.

It is easy to verify that every function f ∈ PES(C) from the construction

in Theorem 5 is a generator of free algebra, so the set PES(C) is strongly

1-algebrable. But the answer to the following question remains unknown.

Question 9. Are the sets PES(C), EDD(R) strongly 2c-algebrable?

4. EDF and EDC

Velleman in [17] proved that a function f : R→ R is continuous if and only

if it is Darboux (i.e. maps connected sets to connected sets) and compact to

compact (i.e. maps compact sets to compact sets). Gámez-Merino, Muñoz-

Fernández and Seoane-Sepúlveda [11] proved that the family of Darboux

nowhere continuous functions and the family of compact to compact nowhere

continuous functions are 2c-lineable. Theorem 8 extends the first of these

results to 2c-algebrability. Now we will also extend the second of them in

the same way.

Let us denote by the EDF(R) (EDC(R), resp.) the set of all nowhere

continuous functions having finitely many values (mapping compact sets to

compact sets, resp.).

Theorem 10. The set EDF(R) is 2c-algebrable but not strongly 1-algebrable.

Proof. Let {Bξ : ξ < 2c} be an independent family of Bernstein sets. For

ξ < 2c define the function fξ as the characteristic function of a set Bξ.
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Let P be any non-zero polynomial in n variables without constant term

and let ξ1 < ξ2 < ... < ξn < 2c. Assume that P (fξ1 , ..., fξn) is non-zero

and note it is constant on every set of the form (Bξ1)ε1 ∩ ... ∩ (Bξn)εn ,

where εi ∈ {0, 1} for i ∈ {1, ..., n}. Since each fξi is constant on ev-

ery set (Bξ1)ε1 ∩ ... ∩ (Bξn)εn so is P (fξ1 , ..., fξn) and it has at most 2n

many values. Since P (fξ1 , ..., fξn) is non-zero so there exist εi ∈ {0, 1}

for i ∈ {1, ..., n} such that P (fξ1 , ..., fξn)|(Bξ1 )ε1∩...∩(Bξn )εn 6= 0. But clearly

P (fξ1 , ..., fξn)|(Bξ1 )0∩...∩(Bξn )0 = 0. Since every set of the type (Bξ1)ε1 ∩ ... ∩

(Bξn)εn is Bernstein, it is dense, so P (fξ1 , ..., fξn) is everywhere discontinu-

ous. Hence EDF(R) is 2c-algebrable.

We will show that EDF(R) is not strongly 1-algebrable. Let f ∈ EDF(R)

and put f(R) = {a1, ..., an}. Clearly the set

{(a1, ..., an), (a2
1, ..., a

2
n), ..., (an+1

1 , ..., an+1
n )}

is not linearly independent in Rn. Hence there are numbers (not every zero)

α1, ..., αn+1 ∈ R such that α1ak + ...+αn+1a
n+1
k = 0 for every k ∈ {1, ..., n}.

Therefore α1f+...+αn+1f
n+1 is the zero function, so EDF(R) is not strongly

1-algebrable. �

Since finite sets are compact, we have that EDF(R) ⊆ EDC(R) and the

following holds.

Corollary 11. The set EDC(R) is 2c-algebrable.

Note that if f ∈ EDC(R) and f have only finitely many values on some

interval I, then using the same reasoning as in Theorem 10 one can find

a non-zero polynomial P of one variable such that P (f) is constant on I,

and therefore the algebra generated by f is not contained in EDC(R)∪ {0}.

Hence to get strong algebrability of EDC(R) one should first answer the

following.

Question 12. Is there a function f ∈ EDC(R) having infinitely many values

on each interval?
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If the answer is positive, then one can ask further the following.

Question 13. Is the set EDC(R) strongly 1-algebrable (strongly c-algebrable,

strongly 2c-algebrable)?

5. Functions that are continuous on a fixed closed set C

Let C ( R be a fixed closed subset of R. In this section we are going

to consider functions f : R → R that are continuous only in the points

of C. Garćıa-Pacheco, Palmberg and Seoane-Sepúlveda in [13, Theorem 5.1]

proved the ω-lineability of the set of functions of finitely many points of con-

tinuity. Then Aizpuru, Pérez-Eslava, Garćıa-Pacheco and Seoane-Sepúlveda

established in [1] that the set of all functions f : R→ R that are continuous

only in the points of U (G) for a fixed open set U (fixed Gδ set G, resp.)

is lineable (coneable). In the following we analyze algebrability of set of all

functions which are continuous precisely on a fixed closed set.

Theorem 14. The set of all functions f : R→ R that are continuous only

at the points of C is 2c-algebrable.

Proof. Let {Bα : α < c} be a decomposition of R into c many disjoint

Bernstein sets and {Nξ : ξ < 2c} be an independent family in c. Let {Bξ :

ξ < 2c} be an independent family of Bernstein sets and enumerate the set

[1, 2] = {rα : α < c}. Let g : R → R be such that g(x) = d(x,C) for x ∈ R

where d stands for the natural metric in R. Clearly g is zero only on the

set C. For every α < c define the function gα(x) = rα · g(x) and for every

ξ < 2c define fξ as in (1) of Section 2. Let us consider an arbitrary non-zero

polynomial P in n variables without constant term and ξ1 < ... < ξn < 2c. If

each function Ps(x) (defined by (2) of Section 2) is zero for every s ∈ {0, 1}n,

then P (fξ1 , ..., fξn) is zero function by the argument contained in Section 2.

Assume that there is s0 = (ε1, ..., εn) ∈ {0, 1}n such that Ps0(x) is non-zero.

We shall show that P (fξ1 , ..., fξn) is continuous at any point of C. Let x ∈ C
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and xk → x. Since |rα| ≤ 2, then 0 ≤ gαk(xk) ≤ 2g(xk) → 2g(x) = 0 for

any αk < c. Hence P (fξ1 , ..., fξn)(xk)→ 0 = P (fξ1 , ..., fξn)(x).

Suppose now that the function P (fξ1 , ..., fξn) is continuous in a point

x0 /∈ C. From the construction of the family {fξ : ξ < 2c} we get that

P (fξ1 , ..., fξn) is zero on the Bernstein set⋃
α∈N0

ξ1
∩N0

ξ2
∩...∩N0

ξn

Bα.

Since every Bernstein set is dense, we have P (fξ1 , ..., fξn)(x0) = 0 and for

every β ∈ N ε1
ξ1
∩N ε2

ξ2
∩ ... ∩N εn

ξn
there exists a sequence (yk)k∈N ⊆ Bβ such

that yk → x0. Hence by the continuity of Ps ◦ gβ we get that Ps0(gβ(yk))→

Ps0(gβ(x0)) = 0 for any such β. Since for α, β ∈ N ε1
ξ1
∩ N ε2

ξ2
∩ ... ∩ N εn

ξn

with α 6= β we have that gα(x0) = rα · g(x0) 6= rβ · g(x0) = gβ(x0). Then

Q(β) := Ps0(gβ(x0)) has infinitely many zeros as a polynomial in β. Hence

it is the zero function, and we reach a contradiction. Hence {fξ : ξ < 2c}

span an algebra of functions with the desired property. �

Recall (see [15]) that the set of continuity points of an arbitrary function

R → R is of type Gδ. Conversely, for each Gδ set C there is a function

f whose set of continuity points is exactly C. Therefore one can ask the

following.

Question 15. Fix a Gδ set C ⊆ R. What can be said about the algebrability

of set of all function whose set of continuity points is exactly C?

6. Measurability of the composition

It is well known that the composition of any two continuous functions is

also continuous and therefore measurable. Moreover if f is continuous on the

interval [a, b] and g is measurable on the interval [α, β] with g([α, β]) ⊆ [a, b],

then the composition f ◦g is measurable on [α, β]. On the other hand it is not

always true that f◦g is measurable when f is measurable and g is continuous.

Azagra, Muñoz-Fernández, Sánchez and Seoane-Sepúlveda proved in [6] that
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there is a c-dimensional vector space W ⊆ RR of continuous functions such

that for every g ∈ W \ {0} there is a c-dimensional vector space V ⊆ RR of

measurable functions such that f◦g is non-measurable for any f ∈ V \{0}. In

this section we will improve this result combining the method of independent

Bernstein sets and ideas from [6]. We will need in the sequel the following.

Proposition 16 ([6]). There is a c−dimensional linear space W ⊆ RR of

continuous functions such that if g ∈ W\{0} then there is a closed set D

of measure zero such that g|g−1(D) is one-to-one and g−1(D) is of positive

measure.

Theorem 17. Assume that g : R → R is a continuous function. Assume

that there is a perfect set D ⊆ R of measure zero such that g|g−1(D) is one-

to-one and g−1(D) is of positive measure. Then there exists a linear space

V with dimV = 2c of measurable functions such that f ◦g is non-measurable

for any f ∈ V \{0}.

Proof. It is easy to see that if {Bξ
0 : ξ < 2c} is an independent family of

Bernstein sets and D is perfect, the family {Bξ
0 ∩ g−1(D) : ξ < 2c} is also an

independent family of Bernstein sets in g−1(D). Assume that {Bξ : ξ < 2c}

is an independent family of Bernstein sets in g−1(D). For ξ < 2c let fξ be

a characteristic function of a set g(Bξ). Note that for every ξ < 2c the set

g(Bξ) ⊆ D is of measure zero, hence the function fξ is measurable. Let

V ⊆ RR be the linear subspace spanned by the family {fξ : ξ < 2c}.

Let f ∈ V . There are ξ1 < ... < ξn < 2c and αi 6= 0 with f = α1fξ1 + ...+

αnfξn . Note that f maps R into A =

{∑
i∈I

αi : ∅ 6= I ⊆ {1, ..., n}
}
. We will

prove that (f ◦ g)−1({a}) is non-measurable for any a ∈ A\{0}. Note that

the set f−1({a}) equals

⋃⋂
i∈I

g(Bξi) ∩
⋂

i∈{1,...,n}\I

g((Bξi)−1) : I ⊆ {1, ..., n},
∑
i∈I

αi = a

 =
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= g

⋃⋂
i∈I

Bξi ∩
⋂

i∈{1,...,n}\I

(Bξi)−1 : I ⊆ {1, ..., n},
∑
i∈I

αi = a


 .

The last equality follows from the fact that g|g−1(D) is one-to-one. Clearly

(f ◦ g)−1({a}) is Bernstein set in g−1(D). �

Using Theorem 17 and Proposition 16 we obtain the following.

Corollary 18. There is a c-dimensional vector space W ⊆ RR of continuous

functions such that for every g ∈ W\{0} there is a 2c-dimensional vector

space V ⊆ RR of measurable functions such that f ◦ g is non-measurable for

any f ∈ V \{0}.

In [6] it is asked if there are two c−dimensional subspaces W and V of

RR such that any g ∈W is continuous, any f ∈ V is measurable and f ◦ g is

non-measurable. It seems to be a hard problem. Even the problem of finding

one measurable function f and W as before with f ◦ g non-measurable (for

all g ∈W\{0}) is interesting.
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