ACHIEVEMENT SETS ON THE PLANE - PERTURBATIONS OF GEOMETRIC AND
MULTIGEOMETRIC SERIES

ARTUR BARTOSZEWICZ AND SZYMON GLAB

ABSTRACT. By A(zn) = {fozl Enn : €n =0, 1} we denote the achievement set of the absolutely convergent

series Y >0 | ©rn. We study the relation between the achievement set of the series on the plane and the achieve-

ment sets of its projection into two coordinates. We mainly focus on the series Y02 (€n, yn) where (z5,) is a
geometric series and yn = Ty () for some permutation o € S.

If (xn) is a multigeometric sequence, then A(xn,xg(n>) can be one of at least seven types of sets, which
are strongly related to three types of attainable achievement sets on the real line. We conjecture that if (zn)
multigeometric, then A(xp, :L‘[,(m) can be one of eight types — none of them homeomorphic to the other one.

We prove a general fact on the Hausdorff dimension of the achievement set in Banach spaces. As a corollary
we obtain that if 0 < ¢ < 1/2, dimpy (A(gn,9s(n))) = dimp (A(zn)) = —log2/logq for some class of regular

permutations o € Seo.

1. INTRODUCTION

Suppose that z = (,)22, € ¢; and let

A(z) = anxn D (en)nzy € {0,137
n=1

denote the set of all subsums of the series Y - | z,, called the achievement set (or a partial sumset) of z. In
1914 Soichi Kakeya [8] initiated the study of topological properties of achievement sets presenting the following

result:

Theorem 1.1 (Kakeya). For any sequence x € £1 \ coo
(1) A(x) is a perfect compact set.
(2) If |zn| > > o, |2i] for almost all n, then A(x) is homeomorphic to the ternary Cantor set.
(3) If |zn| < i, [@i] for almost all n, then A(x) is a finite union of closed intervals. In the case of non-

increasing sequence x, the last inequality is also necessary for A(x) to be a finite union of intervals.

Kakeya conjecture was that A(x) is either nowhere dense or a finite union of intervals. It was disproved
by Weinstein and Shapiro [14] and, independently, by Ferens [5]. Guthrie and Nymann in [6] gave a simple
example of sequence, namely x = (5+(4;1)H>00 , such that its achievement set T'= A(x) contains an interval
but it is not a finite union of intervals. In then :al,me paper the authors formulated the following trichotomy for

achievement sets, finally proved in [12]:

Theorem 1.2. For any sequence x € {1 \ coo, A(z) is one of the following sets:

(1) a finite union of closed intervals;
(2) homeomorphic to the ternary Cantor set;

(3) homeomorphic to the set T.
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The set T is homeomorphic to C'U U:Lo:1 Son_1, where S,, denotes the union of the 2”~! open middle thirds
which are removed from [0, 1] at the n-th step in the construction of the ternary Cantor set C. Such sets are
called Cantorvals. Formally, a Cantorval (more precisely, an M-Cantorval, see [9]) is a non-empty compact
subset S of the real line, such that .S is the closure of its interior, and both endpoints of any infinite component
are accumulation points of one-point components of S. A non-empty subset C' of the real plane will be called
a Cantor set if it is compact, zero-dimensional and has no isolated points.

Note that Theorem 1.2 says that ¢; can be divided into four sets: cgg and the sets with properties prescribed
in (1), (2) and (3). Some algebraic and topological properties of these sets have been recently considered in
[2].

The sequence of the form (ki, ko, ..., km,k1q, ..., kmq, k14>, ...) is called multigeometric sequence (see [3])
and it is denoted by (k1, k2, . . ., km; ¢). Note that Guthrie-Nymann sequence (54—(4;"1)” ~ is a multigeometric
series of the form (3/4,6/4;1/4). If ky = --- = k,,, then by Kakeya Theorem A(kq, k;,ﬂ .y km;q) is either a

Cantor set or an interval. As in [1] we denote by X the set

Let us write ¥ as {7y < --- < 75}. Then the one-dimensional achievement set A(z) depends only on ¥ and the
ratio g. We consider the following numbers connected with ¥: diam(X) = 7, — 71, A(X) = max;<s(7i41 — 7)
and I(X) = A(2)/(A(X) 4+ diam(X)). Moreover, we have |X| = s. It was proved in [1] that

(

1)
(2) A is not a finite union of intervals if ¢ < I(X) and A € {79 — 71,75 — Ts—1}-
(3)

For a metric space (X, p) by K(X) we denote the hyperspace of all non-empty compact subsets of X. There

A is an interval if and only if ¢ > I(X).

A is a Cantor set of zero Lebesgue measure if ¢ < 1/s.

is a natural metric on K(X), namely the Hausdorff distance given by
pu(K,L)=inf{d >0: L C B(K,d) and K C B(L,0)}

where K, L € K(X) and B(K, ) = U, x B(z,0) is a d-neighborhood of K. The iterated function system fractal
(in short IFS fractal) generated by the system of affine contractions {f1,..., f,} is the unique fixed point of
the self-map K — (J;_, fi(K). For a positive real number s and § > 0 define H3(F) = inf{>" 7, (diam A,,)* :
Ay, Ay, ... is a d-cover of F} where d-cover of F is a sequence Aj, Ao, ... of sets such that F C (J,—, 4,
and diam(A,) < 6. The s-dimensional Hausdorff outer measure is defined as H°(F') = lims_,o Hj(F) =
supsso Hi(F). It is well-known that for a given Borel set F' and for 0 < s < ¢, if H*(F) < oo, then H!(F) =0,
and if H'(F) > 0, then H*(F) = oco. The Hausdorff dimension dimy (F) of a Borel set F is a critical value
80 € [0, 00], such that H*(F') = oo for all s < s and H*(F) =0 for all s > sp.

Z. Nitecki at the end of his nice survey paper [13] on subsum sets wrote: ”One might also be tempted to
ask about the analogous question for null sequences in the complex plane (or more generally points in R™). In
this context (...) the analysis of translations will be made more complicated by the need to consider directions
as well as distances. Who knows where that might lead?” Following this suggestion we start investigation of
multidimensional achievement sets - its topological and geometric properties.

The aim of our paper is to study the properties of the achievement sets on the plane. Let (x,,,yn) € ¢1 X {1.
By

A(xnayn) = {an(xmyn) : (5n>zo:1 € {O, 1}N}

we denote the achievement set of the series Y ° | (zn,¥n). The main and the most general question we are

interested in, is the following:
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Problem 1.3. Let z,,,yn € {1 be such that A(z,,) = C1 and A(y,) = Co. What can be said about A(zy,,yn)?

Achievement sets of series in R™ were studied by Manuel Morén in [10] and [11]. In [10] a series Y .o, x;
is called fractal series if A(z;) has cardinality continuum (equivalently (z;) ¢ cop) and it has n-dimensional
Lebesgue measure zero. The author has given some sufficient conditions for series Y .o x; being a fractal
series. Each of them implies that > :°; x; is quickly convergent, which means ||lz;]| > >, ., [lzx| for almost
every i, which is a Kakeya type condition. Moran has estimated, and in some cases precisely calculated, the
Hausdorff dimension of the achievement sets.

It is easy to observe that, as in one-dimensional case, the achievement set on the plane is a compact perfect
set (or finite set if elements of underlying series are eventually zero). Moreover, the set A(z,,,y,) is contained
in C; x Cy — the Cartesian product of achievement sets of (z,) and (y,), and A(x,,yy) is symmetric with
respect to the middle point of C; x Cy. Thus if A(z,) and A(y,) are Cantor sets, so is A(2p, Yn)-

If A(zy,) = C, then A(zy,2,) = V2Rz (C) where Rz is the anticlockwise rotation around the origin at an
angle of 7. On the other hand if one add zeros to the series x,, then the one-dimensional achievement set

remains unchanged. In particular

I
Q

A($1,0,$2,0,$3,0,...) = A(O,l‘l,o,l‘g,o,l‘g,...) = A(.Z‘l,xg,xg,...)

and
A((l‘l,O), (O,l‘l), (xg,O), (0,1‘2), (Ig,O), (0,$3), .. ) =CxC.

This simple observation shows that to get something interesting we need to make some restrictions on the

sequence (T, yn). We will deal with the following more specific question.

Problem 1.4. Let x, > 0 for every n € N. Assume that A(x,) = C. What can be said about A(xn,Zq(n))
where 0 € Soo ?

In this paper we will consider even more specific situation. Namely we will consider the case when the series
Zflozl Ty is a geometric or multigeometric series and we will restrict our attention to permutations o € S
which are quite regular. For ¢ € (0,1) the series > oo (¢",¢°™) will be called perturbed geometric series;
similarly we define perturbed multigeometric series.

The paper is organized as follows. In Section 2 we make several general observations on the achievement
sets on the real plane and we consider introductory example of perturbed geometric series to illustrate these
ideas. Under some assumptions on o € S, the achievement set A(q"7q"(")) is an IFS fractal, which in
turn, for 0 < ¢ < 1/2, fulfills the so called Moran’s open set condition that allows us to give the formula for
dimp (A(g™, ¢°™)). In Section 3 we show that the achievement set of perturbed multigeometric series can be
one of at least seven types. We pose the question if the achievement set A(z,,24(,)) for multigeometric ()
can be, up to homeomorphism, one of the eight mentioned types. This would be a classification result similar
that Theorem 1.2. In Section 4 we observe that the orthogonal projection of the achievement set of perturbed
geometric series on the line y = —x equals to the achievement set of multigeometric series. Finally in Section
5 we generalize the notion of an achievement set to the infinite algebraic sum of finite sets in Banach spaces.
In this setup we estimate the Hausdorff dimension of a generalized achievement set. Under certain condition
we precisely calculate the Hausdorff dimension of a generalized achievement set in R". As a consequence we
obtain the formula for dimg (A(¢", ¢°™)) for 0 < ¢ < 1/2 and some class of permutations o € Sa,. The results

of this section generalize that of Moran and that of Section 2.

2. GENERAL OBSERVATIONS AND AN INSTRUCTIVE EXAMPLE

We will focus on the particular case when the permutation o is of the special form.
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Let 0 =ng <nj <ng <ng < ... and let ¢; be permutation of the set {n;_; +1,n,_1 +2,...,n;} for i > 1.
Let 0 = cieac3 -+ € Soo and 0y =1 ... ¢4, ¢ > 1. Let (z,,) € £1.

Proposition 2.1. A(z,, 2., (n)) tends in the Hausdorff metric to A(z,, To(n))-
By

Ak(xna o(n) {Zeﬂ Tn, T U(n) (gn) = {0? 1}k}

denote the k-th approximation of the achievement set A(2,,, T (n))-

Proof. Note that the set J;~ | Ag(Zn, Ty(ny) is dense in A(xy, Zy(n)). The sets Ay (@, Zo(,)) are finite, and
consequently compact. Therefore the sequence (Ag(2n, To(n)))ren tends in the Hausdorff metric to A(z,,, o (n))-
Let ¢ > 0. Since
lim diam (A((a:n, ZTn)s (Tna1y Tnt1)s (Tnt2, Tnta), .- )) =0,

n—oo

there is N € N such that

diam (A((‘T’n; mn)7 ($n+17 x’n+1)7 (xn+27 ./L'n+2), cee )) < 5/2

for n > N. Note that Ay, (Tn,Zs(n)) = An, (Tn, e, (n)), that is the n;-th approximations of the achievement

sets for sequences (Tn, To(n)) and (Zy, T4, (n)) are equal. Note also that
A(x"“ mai(n)) = Anz (In, IUz’(TL)) + A((x"i"rl’ 'rni-‘rl)v (mnr’rQa xni+2)7 R )
Thus

PH (A(-Tna xoi(n))a Am (l‘n, xa(n))) < 5/2
if n; > N. One can find large enough 7 such that

PH (A(:C’m xo(n))a Am (mna xa(n))) < 5/2'
Hence by the triangle inequality for the Hausdorff metric we have
pH(A(iEn, xo(n))v A(xnv l'ol(n))) <e€
for large enough i. m

Example 1. Let 2, = 1/2". Let 0 = (1,2)(3,4)(5,6).... Let o9 = id. Then A(zy,Zs,n)) = A(Tn, )
equals to the diagonal of the square [0, 1] x [0,1]. Let o1 = (1,2). Then
11,11 1 1 1 1 1 1 1 1 1 1 11,33
A nyLoi(n :A D' A\ 90 \53293 /0 \5a294 /7 :A 932 03/°\84° o4 00 VR YAAY RN IR

Note that A((55, 35), (sr: 37), - - - ) is the diagonal of the square [0, ] x [0, 1] and therefore A(z,,, Z,, (n)) is the
union of four pieces of the form A((35, 35), (37, 31), - - - ) shifted by the vectors (0,0), (1, 1), (4, 3),(3,32), see

Figure 1.
Let o9 = (1,2)(3,4) be the second approximation of . Then
11 11 11 11 1 1 1 1

A(xruxoz(n)) = A((§7 1)7 (Z’ 5)7 (§7 E)? (T67 g)’ (275’ 275)’ (276’ 276)’ o ) -
(g5 39) (oo o))+ X

where X = {(0,0), (3, 1), (5.3),(3,2)} + {(0,0), (3, 15), (5. %) (5. 15)} consists of 16 points on the plane.
Therefore A(2p, Zg,(n)) is the union of 16 pieces as in Figure 2.

By Proposition 2.1 the sets, presented on Figures 1 and 2, and the next approximations, tend in the Hausdorff
metric to A(Zy, T(n)) where z, = 1/2" and o = (1,2)(3,4).... On the other hand, the set on Figure 1
equals Dy := T1(D) U Ty(D) U T3(D) U Ty(D) where D is the diagonal of [0,1] x [0,1], T(z,y) = +(z,y),

Ty(z,y) = 3(z,9) + (3, 3), T(x,9) = ;(2,9) + (3, 1) and Ti(w,y) = (2,y) + (§, 7). Then the set given on
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FiGURE 1. Step 1 for o;.

FIGURE 2. Step 2 for 0.

Figure 2 equals Do := T1(D1) U Ty (D) UT3(D1) UTy(Dy). This suggests that A(z,, 2,(,)) is the IFS fractal
generated by four contractions 11,75, 7153, Ty.

Let us consider now the permutations more regular than these from Proposition 2.1 — the permutations c;
will be cycles with the same length.

Let m € N and let ¢ € S,,. Divide N into consecutive segments I, I5,... of length m, that is I; =
{m@Gi—1)+1,m(i — 1)+ 2,...,mi}. Let ¢; be a permutation on I; given by ¢;(m(i — 1) + k) = ¢(k) for
kE=1,...,m. Define 0. = c1cac3.... We say that o, is a regular permutation generated by c. Let ¢ € (0,1).
For € € {0,1}™ put
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Proposition 2.2. The achievement set A(q™,q*\"™) is equal to the IFS fractal generated by the system of
affine contractions {T. : ¢ € {0,1}"}.

Proof. At first note that
A(g",a” ")l i) = 4" A((g" a7 )0 y)-

Therefore

Allg" 7)) = {i (¢".0°™) 2 € {0, 1}’"} A (@) ) =

n=1

= { > (q",qc(")>} +q"A ((q",q‘“("))i":l) -

e€{0,1}m (n=1
- U n(a(@emiz)).
eef{0,1}m
Thus the achievement set A(g",q<(™) is a fixed point of the set function X ~ |J. (0.13m 1=(X), and conse-

quently it is the IFS fractal generated by the system of affine contractions {7 : ¢ € {0,1}™}. O

After [4] we say that the iterated function system (f1, fa,. .., fn) satisfies Moran’s open set condition if and

only if there exists a nonempty open set U, for which we have f;[U]N f;[U] = 0 for i # j and U D f;[U] for all 4.

Such an open set U will be called a Moran open set for the iterated function system. Assume that fi,..., f, are
affine contractions with ratios r1,...,r,, respectively. Let s be the unique solution of the equation 2?21 ri =1

and assume that (f1, fo,..., fn) satisfies Moran’s open set condition. If K is the fixed point of X — J fi(X),
then the Hausdorff dimension dimg(K) of K equals s. For details see [4, Section 6.5, p. 190-199].

Theorem 2.3. Let 0 < ¢ <1/2. Then the system of affine contractions {T. : € € {0,1}™} fulfills the open set
condition. In particular dimg (A(g", ¢%=™)) = dimy (A(q")) = —log2/logq.

Proof. Note that A(¢™) is (f1, fo)-invariant where f1(z) = gz and fa(x) = g + gz. Moreover, f(0,1) C (0,1)

)
and f1(0,1) N f2(0,1) = 0. Thus (f1, f2) satisfies Moran’s open set condition. If ¢* + ¢* = 1, then s = lolgczgl?q)

and consequently dimg(A(z,)) = %.

Let dimax((21,%2), (y1,2)) = max{|z1 — y1|, [22 — yo[}. Since A(g",¢7™) C [0,1] x [0,1], then
diamuax (A (4", 45 )) = diamman(a™ A (0", a7 V)32, ) < ™

Moreover, the last inequality is strict if ¢ < 1/2. Note that

dmax (Z e(n) <qn’qc(n)) ’Z‘g/(n) <qn’q6(n))> > g™
n=1 n=1
if € # €’. Therefore, the system {T. : ¢ € {0,1}"} satisfies Moran’s open set condition with the Moran’s set

equal to (0,1) x (0,1). See also that the unique solution of the equation 2™(¢™)* = 1 equals s = mlg(z%' O

Example 1 continued. By Theorem 2.3 the achievement set has the Hausdorff dimension 1. Moreover, it

is homeomorphic to the Cantor set.



ACHIEVEMENT SETS ON THE PLANE 7

3. EIGHT TYPES OF ACHIEVEMENT SETS

As it was mentioned in the Introduction, the achievement set of multigeometric series is one of three types
— finite union of intervals, Cantor set or M-Cantorval. In this section we will prove that the achievement
set of perturbed multigeometric series can be, up to linear isomorphism, of one of the following forms —
Cantor set (Proposition 3.1(i)), product of a Cantor set and an interval (Example 3), product of two intervals
(Proposition 3.1(ii)), product of two M-Cantorvals (Example 4), product of an interval and an M-Cantorval
(Example 5). We truly believe that, using our method, one can prove that such achievement set can be, up to
linear isomorphism, a product of an M-Cantorval and a Cantor set. Note that if perturbation is trivial, namely
o is the identity, then A(z,,,z,) has the same type as A(z,). Hence, perturbed multigeometric series can be
linearly isomorphic to a finite union of intervals or an M-Cantorval. We also conjecture that the achievement
set A(xz,,x,) for (z,) € €1\ coo can be, up to homeomorphism, one of eight mentioned types.

Let us start from the following observation.
Example 2. Let ¢ = % Then

3
q V241
— : < <
1—q} {(z,2):0<z < 5

A", 4")nzs) = {(z,2) 1 0 <z < }

is the diagonal of the square [0, @] x [0, @] Note that ¢ + ¢? = @ Let o1 = (1,2). Then

LG A 2L,
\/57 2 ) 2 b \/i ) 2 ) 2 .
Therefore A(q™, ¢°*(™) contains the diagonal of the square [0,v/2 4 1] x [0, /2 + 1] which is, in turn, equal to
the achievement set A(¢", ¢").

A(q", qol(n)) = A((q", qn);.zozs)) + {(07 0)7 (

By the simple inductive argument and Proposition 2.1 the achievement set A(¢", ¢”™), where o = (1,2)(3,4) ...
contains the diagonal of the square [0,v/2 + 1] x [0,4/2 4 1]. Thus A(¢", ¢°™) is not homeomorphic to the
Cantor set. Clearly the same argument holds true for any v/2/2 < ¢ < 1.

As we have proved, the achievement set for geometric series is homeomorphic to the Cantor set if 0 < ¢ < 1/2
and it contains homeomorph of the unit interval if 1/ V2 < q < 1. Now we prove more general fact which shed

the light on these phenomena.

Proposition 3.1. Let g € (0,1) and let 0 = (1,2)(3,4).... Then

. . . 2 2 . .
(1) A(q"™,q°™) is the rhombus with vertices (0,0); (lfqz, 13q2); (lfqz, 1fq2) and (%q,l%q) if and only if

q> @ In particular dimg (A(q", ¢°™)) = 2 in this case.
n o(n ; ; : ; 2 . .
(2) A(q", q ( )) is homeomorphic to a Cantor set if and only if ¢ < % Moreover, the rhombus with vertices

(0,0); (1fq2, 1312); (1512, 1fq2) and (f’q, %q) is a Moran’s open set for {T. : ¢ € {0,1}?}, and consequently

dimyr (A(g",¢7™)) = — 1222,

Proof. Let (z,y) € A(g",¢°™). There is a sequence (£,)22; € {0,1}" such that z = 3 °°  £,¢" and y =
S eng®™. Let

o0 o0 oo oo

2n 2n—1 2n—1 2n

Ty = E €nq , T2 = E €2n—194 y Y1 = E €2nq y Y2 = E €on—-1q -
n=1 n=1 n=1 n=1

Then z = x1 + 22 and y = y; + y2. Note that the point (x1,y;) lies on the line y = /¢ and the point (z2, y2)
lies on the line y = gz. It shows that any point of A(g", q"(”)) can be represented as algebraic sum Agop + Apot
of two sets Agop = {(x,2/q) : x € A(¢*)} and Apor = {(z/q,2) : © € A(¢®")}. Note that Agop + Apos is
homeomorphic to A(¢*") x A(¢*") via the linear isomorphism (z,y) — (z + qy,qz +y). If ¢ < % then A(q?")
is a Cantor set, and so is Agop + Abot. The second part of the assertion (2) can be easily checked. If ¢ > g
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then A(¢g?") is an interval, and so Agop + Apot is the thombus with edges (0, 0); (1fq27 1{;2 ); (13227 lqu) and
(14, %) O

Example 3. Let 0 = (1,2,3)(4,5,6).... Let (z,y) € A(g",¢°™). There is a sequence (£,)2%, € {0, 1}
such that z = >°°°  £,¢" and y = > o0 | £,4°™. Let

y1:51q+54q4—|—..., $1:51q3+54q6+...

Yo = (e2¢° + €3¢®) + (e5¢° +e6¢%) + ..., T2 = (e2q + €3¢°) + (e5¢* +e6¢°) + ...
Then © = x; + x5 and y = y; + y2. Note that the point (z1,%;) lies on the line y = x/¢? and the point
(z2,y2) lies on the line y = gz. Then A(g",¢°™) = Apor + Asop Where Aiop := {(z,2/¢%) : = € A(¢*")}
and Apor = {(z,qz) : * € A(q,¢%¢®)}. Note that A(¢>") is a Cantor set with the Hausdorff dimension
—log2/(3logq) if and only if ¢ < 1/3/2; otherwise it is an interval.

Now, consider the achievement set A(q, ¢%; ¢®) of a multigeometric series (q,q?;¢%). Note that A(X) = ¢
and diam(X) = ¢+¢>. Then A(q, ¢%; ¢*) is an interval if ¢° > A(E)f_fﬁm(z) = 2(13_1,
a positive solution of the equation 2¢® 4+ ¢ — 1 = 0. Note that ¢* < 1/v/2 < 1/ /2. Therefore the achievement
set A(q"™, q”(")) is linearly isomorphic to the product of an interval and a Cantor set for ¢ € [¢*, 1/\3/5) Thus
dimp (A(g"™, ™)) = 1—log2/(3log q) for q € [¢*,1//2). Moreover, if ¢ < 1//4, then A(q, ¢%; ¢*) is a Cantor

set.

that is if ¢ > ¢* where ¢* is

Unfortunately, the topological properties of A(q, ¢%;¢>) are not known for 1/¥/4 < ¢ < ¢*. The methods
used by the authors in [1] do not work since the elements of ¥ = {0,4?,q,q + ¢*} and the self-similarity ratio
¢® depend on the same parameter q.

Remark. If 2, = ¢" is a geometric sequence with 0 < ¢ < 1/2 and 0 € S, is regular (see Corollary
5.4 for details) we have dimg(A(z,)) = dimg(A(2n,2s(,))). This is not longer true for ¢ > 1/2 and reg-
ular permutations o. Note that dimgy(A(x,)) = 1 for ¢ > 1/2. On the other hand if ¢ = (1,2)(3,4)...,
then dimp (A(zn, Ton))) = —log2/logq for ¢ < 1/v/2 and dimp(A(zn, Ty(n))) = 2 otherwise. If o =
(1,2,3)(4,5,6) ..., then dimp (A(zn, y(n))) = 1 —log2/(3logq) for ¢ € [¢*,1/V/2), and dimp (A(zn, To(n))) =
2 for g > 1/\3/5

Now, using the same method one can prove the following:

Proposition 3.2. Let g € (0,1) and let o = (1,...,k)(k+1,...,2k).... Then
(1) A(q™, q°™) is contained in the parallelogram with vertices
k k 2 k+1

q q q ¢ g q ¢
. _ _ g1 14
(2) A(q",q7™) = Apot + Agop, where
© co k—1
Atop = {Zgnk(anvanflﬂrl) 1Ep = O’ ]_} and Abot = {Z ank+i(an+i,an+i+1) e, = O, 1}
n=1 n=0i=1

k=1 and these two lines contain two edges of

(3) Avot lays on the line y = qz, Aiop lays on the line y = x/q
the parallelogram;

(4) A(q™, q°™) is linearly isomorphic to the product A(q,q>,...,q" ;¢*) x A(¢"; ¢*) of achievement sets of a
multigeometric series (q,q>,...,q" 1 q*) and a geometric series (¢*;q*) via (z,y) — (z + qy, " tx +y);

(5) the set Apor is a Cantor set if ¢ < ’{/W,‘ in this case the parallelogram is a Moran’s open set for
{T. : e € {0,1}*}, and consequently dimg (A(¢g", q°™)) = 712;3‘

(6) the set Aoy is an interval if ¢ > q* where ¢* is the smallest positive solution of the equation 2¢* + ¢! +
4 g?=1;

(7) the set Aiop is a Cantor set if and only if ¢ < ’\“/m if and only if Asop is not an interval.
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Example 4. Let ¢ = 1/2 and let 0 = (1, 3)(2,4)(5,7)(6,8) .... Let (vn) = (3¢, 2¢; q) be a multigeometric
series. Note that the series (3,2;1/4) is a linear transformation of Guthrie-Nymann sequence, and therefore the
achievement set A(3,2;1/4) is an M-Cantorval. Let (x,y) € A(vn,Vy(n)). There is a sequence (£,)52; € {0, 1}
such that 2 = Y7 | e v, and y = D07 | €,U5(n)- Let

1 =e13q + €22 + e53¢° +e62¢° + ..., 1o = £33¢% + €42¢® + e73¢* +es2¢* + ...,

y1 = e13¢% + £22¢% + e53¢  + 262¢* + ..., Yo = £33 + €42q + 73¢° +52¢° + . . ..

Then © = x1 + 22 and y = y1 + y2. Note that the point (x1,y1) lies on the line y = g, while the point (z2, y2)
lies on the line y = x/q. It shows that any point of A(vn,vs(,)) can be represented as the algebraic sum
Apot + Atop of two sets Apor := {(z/q,2) : © € A(3¢%,2¢% ¢*)} and Acop = {(z,2/q) : € A(3¢%,2¢% ¢%)}.
Then the achievement set A(vy,, Vs (n)) is linearly isomorphic to the product A(3,2;1/4) x A(3,2;1/4) of two
M-Cantorvals.

Example 5. Let ¢ = 1/v/4 and let o = (1,3,5)(2,4,6)(7,9,11)(8,10,12).... Let (v,) = (3¢,2¢;q) be a
multigeometric series. Let (z,y) € A(vn, Vs (n)). There is a sequence (g,)52 € {0,1}" such that x = 3~
and y = Y7 | €nUq(n). Let

n—=1&nUn

21 = (13q + £229) + (e73¢" +e82¢") + ..., 1 = (€13¢° + €22¢%) + (e73¢° + e82¢°) + ...,
= (33¢% + €424 + 53¢ + £62¢%) + (£93¢° + €102¢° +€113¢° +122¢5) + ...,
Y2 = (£33q + €42q + €53¢% + £62¢%) + (03¢ + €102¢* + £113¢° + £122¢°) +

Then x = x1+22 and y = y;+y2. Note that the point (21, y;) lies on the line y = ¢%x, while the point (2, y2) lies
on the line y = x/q. It shows that any point of A(v,,vs(n)) can be represented as the algebraic sum Apot + Atop
of two sets Apot := {(2/¢* ) : © € A(3¢%,2¢%;¢®)} and Aiop == {(z,2/q) : € A(3¢°,24¢°,3¢,2¢;¢%)}. The
set Apot is an M-Cantorval for given q.

Now, consider the multigeometric series (3¢2,2¢%,3¢%,2¢%;¢®). Note that A(X) = 2¢* and diam(¥) =
5¢® + 5¢>. It is simple to show that ¢3 > AZ) = X

A(X)+diam(X) — 5+47q¢°
Therefore the achievement set A(vp,vq(n)) is linearly isomorphic to the product of an M-Cantorval and an

Thus A(3¢2,2¢%,3¢,2¢%; ¢) is an interval.

interval.

4. THE ORTHOGONAL PROJECTION OF THE ACHIEVEMENT SETS

For better understanding of the plane achievement set structure we will study its projection onto the line
D = {(z,—z) : * € R}. Let 7 : R2 = D, given by 7(z,y) = (%52, 45%), be the projection onto D. Tt is
well-known that A(¢™)— A(¢™) is homeomorphic to the Cantor set if 0 < ¢ < 1/3, and otherwise A(¢™) — A(¢™)

is an interval, see [3].

Proposition 4.1. Let x, = ¢" and 0 = (1,2)(3,4)(5,6).... Then

L9 52y,

q
A(g®*) - %

T(A(Zn, To(n))) = {(z,—2) 1z € %

In particular, 7(A(zn, 25(n))) is homeomorphic to the Cantor set iff q < 1/V/3; otherwise it is an interval.

Proof. We have

7T(A($7” 3’30 (n))) = {Z En xU(n) 5 xG(n)Q_ xn) L€ E {0, I}N}

Ifn=2k—1, then , — Ty(n) = g2kl — g%k, and if n = 2k, then @, —x,(,) = ¢*F —¢?*=1. Then the projection
of T(A(Zn, To(n))) on the first coordinate equals

2k—1

{Z Eok— 1 + ZE2k 1Ep € {0, 1}N} =
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= {7 ZE% 17— —— Zéqu ren €{0,1}1} =

l—gq 1*q
_ A 2k\ A 2k )

5 (@) 5 (")

The set 12;[1‘1 A(g?*) — 12—_(1‘1 A(q?%) has the same topological properties as A(¢?*) + A(¢?%). Indeed, it is equal

ﬂ A(q?, -2, ¢%, —q4, ...), so by the well-known properties of achievement sets in the real line, it is the
translatlon of the set =4 A(q q?,q% ¢, ...), and consequently, it is the affine image of A(q?, ¢2, ¢, ¢*,...).
Such set is an interval for ¢ > 1/3 and it is homeomorphic to the Cantor set if ¢> < 1/3. Hence, for ¢ < v/3/3
the projection of A(g™, ¢?(™) is a Cantor set and for ¢ > /3/3 it is an interval. O

In the same way as Proposition 4.1, one can prove the following:

Theorem 4.2. Let o. be a reqular permutation generated by a cycle ¢ of the length m. Then the orthogonal
projection of A(q",q°™) on D is the affine image of a set
A" a-q™ "¢ g™ g (L gt g™ )"
(@™ a-(d™)% ¢ (@) a2 (@) (Lt g+ ™) (™))
We are interested in the problem how topological properties of this set depend on ¢q. The sequence x, which

achievement set is the orthogonal projection from Theorem 4.2, can be written as z = (1,q,4¢%,...,¢™ 2,1+

q+---+q" 2% ¢™). We have
E::{14Lq3~~,qm‘2Js+q-+-~-%qm‘?q—%q?..q2-%2q+~-~+2qm_2}

Thus |z <2m
q> %, then A(X ) = ¢ ? and the greatest gap is the first one in X. By (1), A(z) is an interval if and only if

(x) is a Cantor set with measure zero. If

m—2

m s q
- 2+2q+ +2qm—3 +3qm—2

what means that ¢ is not less than the positive solution g¢,, of the equation 3¢™ + 2¢™ ' + --- 4+ 2¢®> = 1.

q

Observe that for m = 2 we have g» = 1/v/2 and we obtain the dichotomy from Proposition 4.1: A(z) is either

1

a Cantor set or an interval. For m > 2 we have g, > 7/5m—-

Unfortunately, as in the case of Example 3 and Proposition 3.2, we do know almost nothing on the topological
properties of the set A(z) for 7/ 2m171 < ¢ < ¢m. We only know that it is not a finite union of intervals. At
the end let us observe that if || < 2™ — 1, the set A(x) is an interval.

5. ACHIEVEMENT SETS IN BANACH SPACES

Let X be a Banach space. Let X1, X5,... be finite subsets of X such that a series Z;’Lozl Yn is absolutely
convergent for any choice y, € X,,. By A((X,,)3%,) we denote the set {> 7, ypn : yn € Xy }. Put Y =[[,o, X;
If one consider X; with the discrete topology, then Y, considered with the product topology, is homeom(;rphic
to the Cantor set. Let F': Y — A((X,,)52;) be given by F((yn)521) = Y ney Un-

Lemma 5.1. The function F is continuous. In particular A((X,)5 ) is compact.

Proof. Let § > 0. Since a series Z _, Yn is absolutely convergent for any choice of y, € X, the series of
non-negative numbers >, d(0, X,,) is convergent where d(0, X,,) = max{||y| : y € X,,} is a distance from
X, to zero. Find N such that > \ ., d(0,X,) < 6/2. Let Uy be a basic open neighborhood of (y,)n2; of
the form Uy = {(2,)22, € Y : 2,, = yp, for n < N}. Then

oo oo

I an=> wall <1 D @l =1 Y el <2 ) d(0,X,) <6
n=1 n=1

n=N+1 n=N+1 n=N+1
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for every (z,,)52, € Uy. Thus F(Uy) C B(Y.,° | yn,d), which means that F' is continuous. O

Let R; = {ZZO:Z-H Un :Yn € Xn} = A((Xn)pZiy1). By Lemma 5.1, the set R; is compact. Therefore it is

bounded in X and the following number is well-defined
R; :=inf{r: R; C B(x,r) for some z € X}.
Let t; = min{||lz —y|| : ® # y,x,y € X1 + -+ + X;}. The following is the main result of this section.

Theorem 5.2. (i) If t; > 2R, for every i € N, then A((X,)52,) is a Cantor set.
(i) dimpg (A((X,)22,)) < liminf; o0 (—i287%)  where n; = | X1+ Xo 4 --- + Xi|;

n=1 log R;
(iii) Assume that X = R™ and t; > 2R; for every i € N. If inf% > 0, then dimy(A((X,)52,)) =
P log n;
hmlnf,»_,oo(—logRi).

Proof. (i) For any ¢ € N find R} with R; < R} < t;/2 and v; € X such that R; C B(v;, R,). Note that
A((Xn)2) € U{B(x + v, Rl : 2 € X1 + -+ + X;} for every i € N. To see it, fix y, € X,,. Then

S Yn =2+ 30 1 Yn where z = 30 y,. Moreover x € Xq + -+ X; and Y200y, € R; C B(uv;, R)).
Thus Y07, yn € B(x + v;, R}). Therefore

AXn)pz) c UB@E +vi Rt e Xy 4+ + Xi}
i>1

Now we will show that the function F' is one-to-one. Take two distinct points (y,),(y,) € Y. Let 4
min{n : y, # y,}. Then F(y,) € B(y1 + -+ y; + v, R)), F(y,) € Byi + - + vy} + v, R}) and ¢,
(s + ) — (g + -+ g0l Since R < t3/2, then By + -+ gs + 01, B) N By + -+ + vy, BY) =
Thus F as a continuous bijection is a homeomorphism. Therefore A((X,,)22 ) is a Cantor set.

(ii) Let s > hmianoo(f}gggi) We need to show that 1 (A((X,)32,)) < oo. Let 0<d<1 Findi>1
such that — 1°g"1 < s and R; < §. Next, find ¢ such that — logm <t<sandn; /" < 5. Then R; < nfl/t.
Put R, =n; 1/t. Then {B(z +v;,Rl) 12 € X1 + Xo+ -+ + XZ} is a d-covering of A((X,,)52 ). Then for this

covering we have

<
0.

Z diam(B(z + v;, R}))® = n;(2R})* < 2°n;(R})" = 2°.
rzeEX1+ X+ +X;
Therefore Hj( A((X,,)52,)) < 2° for every § > 0. Hence H*( A((X,)52,)) < 2° < oo.

(iii) Let s < liminf; o —llggzi. There is g such that —llgggii > s for every i > 7g. Therefore for every i > i

there is R} such that R; < R; < min{¢;/2,2R;} and —llogzi > s. For i < ip take any R} with R; < R} < t,.
Since inf R’“ > 0, then inf ’“ > inf R”l > 0. Since F' is one-to-one, n; = [ X1 +--- + X;| = | X3+ | X;].

For ¢ > 1 let p; be a unlform probablhty distribution on a finite set X;, that is uz({t}) = 1/|X;| for every

te X;. Let u= Hi>1 1; be a probability product measure on Y = Hizl X;. Let X\ be a probability measure on
A((X,,)22,) defined as A(E) = u(F~(E)). Since F is one-to-one, for z € A((X,)0%,), 2 = > oy i, T € X

we have

1
/ /
B(v; + E Zn, RY)) B(v; + E T, R;))) = p({z1} x .. {a;} HXk TAREABEE

k>1i

We will need the following.
Claim. There is M > 0 such that for any p > 0 there is i € N such that p > R} and

Hre X1+ Xo+-+X;: BNB(x+v;, R)) # 0} <M

for every ball B with radius p.
Proof of the Claim. Let B be a ball with radius p and let ¢ be the smallest natural number such that R} < p.
Let B’ be a ball, concentric with B with radius 3p. The number M is not greater than the number M’ of balls
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B(z+wv;, R}), x € X1 +---+ X;, contained in B’ which, in turn, fulfills the inequality M'(R;)™ < 3™p™ (since

R4
R > 0. Then

X =R™, the sum of volumes of B(z + v;, R}) cannot exceed the volume of B’). Put 7 := inf

3p\" 3R\ 3\"
— < | - .
M<(R;) < m) =\~

In both cases M does not depend on 7.
Let 0 <6 < min{R] ,1} and ¢ > 0. Take a d-covering U, of A((X,)s%,) such that

Zdiam(Up)s < HF(A((Xn)pZy)) + &
p=1
We can cover A((X,,)>2,) with balls B, with U, C B, and diam(B,) < 2diam(U,). Then
> diam(U,)* > 27 ) diam(B,)".
p=1 p=1

Using the Claim for p = diam(B,)/2 we find i such that A(B,) < > A(B(x + v;, R})), where the sum is over
all balls B(x + v;, R}) such that B, N B(z +v;, R}) # 0, x € X1 + --- + X; and diam(B,) > 2R.. Moreover

A(B,) < M = % < M(R)* <M (di"“n(B”))s

Xl [ Xl XG0 2
Therefore
[e'e] M '] . , '] ' . . .
1< pz;: ABp) < o7 ;(dlam(Bp)) < M;dlam(Up) < M(H3(A(X0)22,) +e).

This shows that H*(A(X,)52;) > 0, and consequently by (ii) we have dimg (A(X,,)%2 ;) = liminf; o (— llggg ).

O

Let us remark that one can easily generalize Theorem 5.2 for the achievement set in a Polish Abelian
group considered with an invariant metric. Then the condition X = R™ in part (iii) of Theorem 5.2 can be
change to the following condition for groups with an invariant metric: there is a constant C' > 0 such that
for every R > 0 any ball of radius R contains at most C' many pairwise disjoint balls of radius R/2. This
condition is fulfilled for R™ and in ZY considered with an invariant metric d((z,), (y,)) = 2~ @n{menFyn},
It fails in infinitely dimensional Banach spaces and in the group []>7,Z, endowed with an invariant metric
d((2n), (yn)) = 27 mintmenFund,

Now we present several applications of Theorem 5.2.

Let Y | @, be an absolutely convergent series in a Banach space X. For an increasing sequence 1 = ky <
k1 < ko < ... of natural numbers we define

ki—1

X;={ Z EnZy e =0,1},

n=k;_1
t;=min{|lz —yl|:z#yand 2,y € X1 + Xo+ -+ + X}
and

r; = max{|| Z Enyl : e = —1,0,1} = diam(R;).

Corollary 5.3. (i) If t; > r; for every i € N, then A(z,,) is a Cantor set;
(it) dimp (A(x,)) < liminfiﬂoo(—llzgfii), where n; = | X1 + Xo + - + X4|;

(i1i) Assume that X = R™ andt; > r; for everyi € N. Ifinf % > 0, then dimpy (A(z,)) = lminf;_, oo (— 10874,

" Togrs
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Proof. 1t is enough to show that r; = 2R;. Clearly r; < 2R;. Note that

oo
r; = max{|| Z enn| i en = —1,1}.

n:kl
Indeed, let y = Y27, enx, and €, = 0 for some n > k;. Then |[y|| < |ly + 2| or [|y[| < [ly — z,[|. This means
that we enlarge the value of || Y77, &,2,| changing each &, = 0 to £1.
Let 7 =1 —k, Tn- Then for every e, € {—1 , 11 we have

R; < r(naXHx— Z Entn| = IIlaX*” Z Enlnl = 1i/2.
n=~k;

Therefore r; = 2R;. ]

Note that if Y0 | x,, is quickly convergent, that is if ||z,| > >, |||, then for k; = i we have ¢; > r;.

i>n
Therefore the achievement set of a quickly convergent series is a Cantor set. This shows that our result
generalizes two first parts of Kakeya Theorem.

Let us go back to the achievement set of perturbed geometric series on the real plane. Let o = cicacs ...

and let |¢;| stand for the length (the cardinality of domain) of ¢;.

Corollary 5.4. (i) Let0 < q < \/2/2. Then dimy (A(q",¢°™)) < —log2/logq. In particular the achievement
set A(q™, q°") has Lebesque measure zero.

(ii) Let 0 < q < 1/2. Assume that there is M such that |c;| < M for every i > 1. Then dimg(A(q", ¢°™)) =
—log2/logq.

(iii) Let ¢ = 1/2. Then dimg(A(g", ¢°™)) = 1.

Note that for ¢ > 1/2/2 the estimation dimg (A(g",q°™)) < —log2/logq is valid but trivial. This follows
from the fact that dimpy(B) < 2 < —log?2/logq for any compact set B C R2.

Proof. (i) We will use the notation from Corollary 5.3. Let ky = 1 and kn41 = kn + |cu|. Then X; =
{ZZ;k1_1 en(q",q°™) 1€, =0,1}. Since o(n) > n for every n > ki, c({n,n+1,...}) ={n,n+1,...} and

r; = diam(R;) = diam{ Z en(q"q"™) i e, = 0,1} = || Z (¢, ™) = |I( Z q°, Z ™| =

n>k; n>k; n>k; n>k;
qki k,’ \/iqki
Il( )|| = (L, )] = :
1-— 1—g¢q 1—g¢q
Note that n; = [ X1 + -+ X;| < 2|Cl‘+"“°1‘ = 21%—1. By Corollary 5.3 we obtain
1 ; k; —1)log2 log 2
dimg (A(g", ¢°™)) < liminf—M < liminf — (k; — 1) log —_ 82
i—00 log i 1—00 10g£ + k; logq logq
(ii) Note that
. ki ki+|cil
Tiv1 ¢t g ¢
== > >0
Ti U qa

Let m(k) = |e1| + -+ + |ck]- Note that A((q”,q"("))an(k)H) is contained in the square S = [0, 4
Then A(g", ¢°™) is covered with 2"™(*) squares of the form

m(k) m(k)
Z enq” Z € q ) + Sk
n=1

where £ = (g,) € {0,1}™®). Note that for each k the family {C. : ¢ € {0,1}™(®)} of squares is pairwise disjoint
if ¢ < 1/2. Then r; < fq;n(;)ﬂ V2¢™*) < t;. Therefore by Corollary 5.3 we have dimg(A(g",¢°™)) =
—log2/loggq.
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(iii) By (i) we already know that dimg(A(1/2",1/2°")) < 1. Let § > 0, s > 0. Note that for each k
the family {C. : e € {0,1}™")} of squares is pairwise non-overlapping if ¢ = 1/2. Let {U;} be d-covering of
A(1/27,1/2°(™) such that

idiam(Ui) < HY(A(1/27,1/2°0)) + .
i=1

By the proof of Theorem 5.2 the measure H!(A(1/2",1/27(™)) is finite, and therefore "5° | diam(U;) < co. We
can cover A(1/2",1/2°(™) with open balls B; with diam(B;) < 2diam(U;). Since A(1/2",1/2°() is compact,

there is ¢ such that By, ..., B, cover A(1/2",1/2°) and 3%, | diam(B;) < s. Let §' = min{diam(B;) :
i < t}. Asin (i) we find k such that v/2/2™%) < §. Let Jy,...,J, be subsets of {0,1}™*) defined as
J; = {e: C.NB; # 0}. Since the family {C. : € € {0,1}™®} is pairwise non-overlapping, |J,_, J; = {0, 1}™*).

Let B} be an open ball concentric with B; with diam(B}) = 3diam(B;). Then C. C Bj for every € € J;. If
e,e/ € {0,1}™*) are distinct, then

m(k) m(k)
D em)/2n =y myr/en| = 1/2mH).
n=1 n=1

Therefore the set {m1(C.) : ¢ € {0,1}™*)} of projection on the first coordinate of sets C. consists of non-
overlapping intervals on the line. Similarly {m(C.) : & € {0,1}™*)} consists of non-overlapping intervals on
the line. Then

|J;| diam(C.) < diam(Bj) = 3 diam(B;),

and consequently

t t
Zdlam ) < Z diam(C, Z Z |.J;| diam(C,
, _ oy

< zt:?)diam(Bi) < i?)diam < ZGdlam ) < 6(HM(A(1/27,1/2°0M)) + 5).
Therefore H'(A(1/27,1/2°(M)) > 0. Consequently dimg (A(1/2",1/2°(™)) = 1. O
Proposition 5.5. The set of all permutations o of the form cicocs ... is residual in Sy
Proof. Note that the set
X, ={0€Sx:Ik>no({l,....k}) ={1,....k}}

is open and dense in So,. Next, see that

ﬁX ={0€Sx:VnIk>no({l,....k}) ={1,... . k}} =

n=1
= {O’ €S :dk1 < ko <...Vi (T({kz + 1,...,]€i+1}) = {k1+1,,kl+1}}
which is in turn the set of all permutations o of the form cicacs. . .. O

Corollary 5.6. The assertion of Corollary 5.4 (iii) holds for almost every, in the sense of Baire category,

permutation o € Sso

Problem 5.7. Let x, = ¢", 0 < q < 1/2. Let 0 € Sx be an arbitrary permutation. Is it true that

dim 7 (A, o)) = ooh2 2
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If X is an infinitely dimensional Banach space, the achievement set A(z,), as a compact set, is small in
many senses (nowhere dense, porous, Haar null etc.) in X. The next example shows that it can be big in other
meaning, for example it can be homeomorphic to the Hilbert cube and in particular of infinite dimension.
Example 6. Let Ey, Es,... be a partition of N into pairwise disjoint infinite sets. Let E; = {m;; < mys <
m;3 < ...}. Let x, € ¢y be defined as follows: z,, = ﬁ -e; if n = my, where e;(j) =1if i = j and ¢;(j) =0
otherwise. Then > 0" [z, = Y2, Y | 57 = 1. Then the achievement set A equals [0,1] x [0,1/2] x
[0,1/4] x ..., and consequently it is homeomorphic to the Hilbert cube [0, 1.
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