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Abstract. By A(xn) =
{∑∞

n=1 εnxn : εn = 0, 1
}

we denote the achievement set of the absolutely convergent

series
∑∞
n=1 xn. We study the relation between the achievement set of the series on the plane and the achieve-

ment sets of its projection into two coordinates. We mainly focus on the series
∑∞
n=1(xn, yn) where (xn) is a

geometric series and yn = xσ(n) for some permutation σ ∈ S∞.

If (xn) is a multigeometric sequence, then A(xn, xσ(n)) can be one of at least seven types of sets, which

are strongly related to three types of attainable achievement sets on the real line. We conjecture that if (xn)

multigeometric, then A(xn, xσ(n)) can be one of eight types – none of them homeomorphic to the other one.

We prove a general fact on the Hausdorff dimension of the achievement set in Banach spaces. As a corollary

we obtain that if 0 < q ≤ 1/2, dimH(A(qn, qσ(n))) = dimH(A(xn)) = − log 2/ log q for some class of regular

permutations σ ∈ S∞.

1. Introduction

Suppose that x = (xn)∞n=1 ∈ `1 and let

A(x) =

{ ∞∑
n=1

εnxn : (εn)∞n=1 ∈ {0, 1}N
}

denote the set of all subsums of the series
∑∞
n=1 xn, called the achievement set (or a partial sumset) of x. In

1914 Soichi Kakeya [8] initiated the study of topological properties of achievement sets presenting the following

result:

Theorem 1.1 (Kakeya). For any sequence x ∈ `1 \ c00

(1) A(x) is a perfect compact set.

(2) If |xn| >
∑
i>n |xi| for almost all n, then A(x) is homeomorphic to the ternary Cantor set.

(3) If |xn| ≤
∑
i>n |xi| for almost all n, then A(x) is a finite union of closed intervals. In the case of non-

increasing sequence x, the last inequality is also necessary for A(x) to be a finite union of intervals.

Kakeya conjecture was that A(x) is either nowhere dense or a finite union of intervals. It was disproved

by Weinstein and Shapiro [14] and, independently, by Ferens [5]. Guthrie and Nymann in [6] gave a simple

example of sequence, namely x =
(

5+(−1)n

4n

)∞
n=1

, such that its achievement set T = A(x) contains an interval

but it is not a finite union of intervals. In the same paper the authors formulated the following trichotomy for

achievement sets, finally proved in [12]:

Theorem 1.2. For any sequence x ∈ `1 \ c00, A(x) is one of the following sets:

(1) a finite union of closed intervals;

(2) homeomorphic to the ternary Cantor set;

(3) homeomorphic to the set T .
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The set T is homeomorphic to C ∪
⋃∞
n=1 S2n−1, where Sn denotes the union of the 2n−1 open middle thirds

which are removed from [0, 1] at the n-th step in the construction of the ternary Cantor set C. Such sets are

called Cantorvals. Formally, a Cantorval (more precisely, an M-Cantorval, see [9]) is a non-empty compact

subset S of the real line, such that S is the closure of its interior, and both endpoints of any infinite component

are accumulation points of one-point components of S. A non-empty subset C of the real plane will be called

a Cantor set if it is compact, zero-dimensional and has no isolated points.

Note that Theorem 1.2 says that `1 can be divided into four sets: c00 and the sets with properties prescribed

in (1), (2) and (3). Some algebraic and topological properties of these sets have been recently considered in

[2].

The sequence of the form (k1, k2, . . . , km, k1q, . . . , kmq, k1q
2, . . . ) is called multigeometric sequence (see [3])

and it is denoted by (k1, k2, . . . , km; q). Note that Guthrie-Nymann sequence
(

5+(−1)n

4n

)∞
n=1

is a multigeometric

series of the form (3/4, 6/4; 1/4). If k1 = · · · = km, then by Kakeya Theorem A(k1, k2, . . . , km; q) is either a

Cantor set or an interval. As in [1] we denote by Σ the set{
m∑
n=1

knεn : (εn)mn=1 ∈ {0, 1}m
}
.

Let us write Σ as {τ1 < · · · < τs}. Then the one-dimensional achievement set A(x) depends only on Σ and the

ratio q. We consider the following numbers connected with Σ: diam(Σ) = τs − τ1, ∆(Σ) = maxi<s(τi+1 − τi)
and I(Σ) = ∆(Σ)/(∆(Σ) + diam(Σ)). Moreover, we have |Σ| = s. It was proved in [1] that

(1) A is an interval if and only if q ≥ I(Σ).

(2) A is not a finite union of intervals if q < I(Σ) and ∆ ∈ {τ2 − τ1, τs − τs−1}.
(3) A is a Cantor set of zero Lebesgue measure if q < 1/s.

For a metric space (X, ρ) by K(X) we denote the hyperspace of all non-empty compact subsets of X. There

is a natural metric on K(X), namely the Hausdorff distance given by

ρH(K,L) = inf{δ > 0 : L ⊂ B(K, δ) and K ⊂ B(L, δ)}

whereK,L ∈ K(X) and B(K, δ) =
⋃
x∈K B(x, δ) is a δ-neighborhood ofK. The iterated function system fractal

(in short IFS fractal) generated by the system of affine contractions {f1, . . . , fn} is the unique fixed point of

the self-map K 7→
⋃n
i=1 fi(K). For a positive real number s and δ > 0 define Hsδ(F ) = inf{

∑∞
n=1(diamAn)s :

A1, A2, . . . is a δ-cover of F} where δ-cover of F is a sequence A1, A2, . . . of sets such that F ⊂
⋃∞
n=1An

and diam(An) ≤ δ. The s-dimensional Hausdorff outer measure is defined as Hs(F ) = limδ→0Hsδ(F ) =

supδ>0Hsδ(F ). It is well-known that for a given Borel set F and for 0 < s < t, if Hs(F ) <∞, then Ht(F ) = 0,

and if Ht(F ) > 0, then Hs(F ) = ∞. The Hausdorff dimension dimH(F ) of a Borel set F is a critical value

s0 ∈ [0,∞], such that Hs(F ) =∞ for all s < s0 and Hs(F ) = 0 for all s > s0.

Z. Nitecki at the end of his nice survey paper [13] on subsum sets wrote: ”One might also be tempted to

ask about the analogous question for null sequences in the complex plane (or more generally points in Rn). In

this context (...) the analysis of translations will be made more complicated by the need to consider directions

as well as distances. Who knows where that might lead?” Following this suggestion we start investigation of

multidimensional achievement sets - its topological and geometric properties.

The aim of our paper is to study the properties of the achievement sets on the plane. Let (xn, yn) ∈ `1× `1.

By

A(xn, yn) :=

{ ∞∑
n=1

εn(xn, yn) : (εn)∞n=1 ∈ {0, 1}N
}

we denote the achievement set of the series
∑∞
n=1(xn, yn). The main and the most general question we are

interested in, is the following:
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Problem 1.3. Let xn, yn ∈ `1 be such that A(xn) = C1 and A(yn) = C2. What can be said about A(xn, yn)?

Achievement sets of series in Rn were studied by Manuel Morán in [10] and [11]. In [10] a series
∑∞
i=1 xi

is called fractal series if A(xi) has cardinality continuum (equivalently (xi) /∈ c00) and it has n-dimensional

Lebesgue measure zero. The author has given some sufficient conditions for series
∑∞
i=1 xi being a fractal

series. Each of them implies that
∑∞
i=1 xi is quickly convergent, which means ‖xi‖ >

∑
k>i ‖xk‖ for almost

every i, which is a Kakeya type condition. Morán has estimated, and in some cases precisely calculated, the

Hausdorff dimension of the achievement sets.

It is easy to observe that, as in one-dimensional case, the achievement set on the plane is a compact perfect

set (or finite set if elements of underlying series are eventually zero). Moreover, the set A(xn, yn) is contained

in C1 × C2 – the Cartesian product of achievement sets of (xn) and (yn), and A(xn, yn) is symmetric with

respect to the middle point of C1 × C2. Thus if A(xn) and A(yn) are Cantor sets, so is A(xn, yn).

If A(xn) = C, then A(xn, xn) =
√

2 Rπ
4

(C) where Rπ
4

is the anticlockwise rotation around the origin at an

angle of π
4 . On the other hand if one add zeros to the series xn, then the one-dimensional achievement set

remains unchanged. In particular

A(x1, 0, x2, 0, x3, 0, . . . ) = A(0, x1, 0, x2, 0, x3, . . . ) = A(x1, x2, x3, . . . ) = C

and

A((x1, 0), (0, x1), (x2, 0), (0, x2), (x3, 0), (0, x3), . . . ) = C × C.

This simple observation shows that to get something interesting we need to make some restrictions on the

sequence (xn, yn). We will deal with the following more specific question.

Problem 1.4. Let xn > 0 for every n ∈ N. Assume that A(xn) = C. What can be said about A(xn, xσ(n))

where σ ∈ S∞?

In this paper we will consider even more specific situation. Namely we will consider the case when the series∑∞
n=1 xn is a geometric or multigeometric series and we will restrict our attention to permutations σ ∈ S∞

which are quite regular. For q ∈ (0, 1) the series
∑∞
n=1(qn, qσ(n)) will be called perturbed geometric series;

similarly we define perturbed multigeometric series.

The paper is organized as follows. In Section 2 we make several general observations on the achievement

sets on the real plane and we consider introductory example of perturbed geometric series to illustrate these

ideas. Under some assumptions on σ ∈ S∞, the achievement set A(qn, qσ(n)) is an IFS fractal, which in

turn, for 0 < q ≤ 1/2, fulfills the so called Moran’s open set condition that allows us to give the formula for

dimH(A(qn, qσ(n))). In Section 3 we show that the achievement set of perturbed multigeometric series can be

one of at least seven types. We pose the question if the achievement set A(xn, xσ(n)) for multigeometric (xn)

can be, up to homeomorphism, one of the eight mentioned types. This would be a classification result similar

that Theorem 1.2. In Section 4 we observe that the orthogonal projection of the achievement set of perturbed

geometric series on the line y = −x equals to the achievement set of multigeometric series. Finally in Section

5 we generalize the notion of an achievement set to the infinite algebraic sum of finite sets in Banach spaces.

In this setup we estimate the Hausdorff dimension of a generalized achievement set. Under certain condition

we precisely calculate the Hausdorff dimension of a generalized achievement set in Rn. As a consequence we

obtain the formula for dimH(A(qn, qσ(n))) for 0 < q ≤ 1/2 and some class of permutations σ ∈ S∞. The results

of this section generalize that of Morán and that of Section 2.

2. General observations and an instructive example

We will focus on the particular case when the permutation σ is of the special form.
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Let 0 = n0 < n1 < n2 < n3 < . . . and let ci be permutation of the set {ni−1 + 1, ni−1 + 2, . . . , ni} for i ≥ 1.

Let σ = c1c2c3 · · · ∈ S∞ and σi = c1 . . . ci, i ≥ 1. Let (xn) ∈ `1.

Proposition 2.1. A(xn, xσk(n)) tends in the Hausdorff metric to A(xn, xσ(n)).

By

Ak(xn, xσ(n)) =

{
k∑

n=1

εn(xn, xσ(n)) : (εn) = {0, 1}k
}

denote the k-th approximation of the achievement set A(xn, xσ(n)).

Proof. Note that the set
⋃∞
k=1 Ak(xn, xσ(n)) is dense in A(xn, xσ(n)). The sets Ak(xn, xσ(n)) are finite, and

consequently compact. Therefore the sequence (Ak(xn, xσ(n)))k∈N tends in the Hausdorff metric to A(xn, xσ(n)).

Let ε > 0. Since

lim
n→∞

diam
(

A((xn, xn), (xn+1, xn+1), (xn+2, xn+2), . . . )
)

= 0,

there is N ∈ N such that

diam
(

A((xn, xn), (xn+1, xn+1), (xn+2, xn+2), . . . )
)
< ε/2

for n > N . Note that Ani(xn, xσ(n)) = Ani(xn, xσk(n)), that is the ni-th approximations of the achievement

sets for sequences (xn, xσ(n)) and (xn, xσk(n)) are equal. Note also that

A(xn, xσi(n)) = Ani(xn, xσi(n)) + A((xni+1, xni+1), (xni+2, xni+2), . . . ).

Thus

ρH(A(xn, xσi(n)),Ani(xn, xσ(n))) < ε/2

if ni > N . One can find large enough i such that

ρH(A(xn, xσ(n)),Ani(xn, xσ(n))) < ε/2.

Hence by the triangle inequality for the Hausdorff metric we have

ρH(A(xn, xσ(n)),A(xn, xσi(n))) < ε

for large enough i. �

Example 1. Let xn = 1/2n. Let σ = (1, 2)(3, 4)(5, 6) . . . . Let σ0 = id. Then A(xn, xσ0(n)) = A(xn, xn)

equals to the diagonal of the square [0, 1]× [0, 1]. Let σ1 = (1, 2). Then

A(xn, xσ1(n)) = A((
1

2
,

1

4
), (

1

4
,

1

2
), (

1

23
,

1

23
), (

1

24
,

1

24
), . . . ) = A((

1

23
,

1

23
), (

1

24
,

1

24
), . . . )+{(0, 0), (

1

2
,

1

4
), (

1

4
,

1

2
), (

3

4
,

3

4
)}.

Note that A(( 1
23 ,

1
23 ), ( 1

24 ,
1
24 ), . . . ) is the diagonal of the square [0, 1

4 ]× [0, 1
4 ] and therefore A(xn, xσ1(n)) is the

union of four pieces of the form A(( 1
23 ,

1
23 ), ( 1

24 ,
1
24 ), . . . ) shifted by the vectors (0, 0), ( 1

2 ,
1
4 ), ( 1

4 ,
1
2 ), ( 3

4 ,
3
4 ), see

Figure 1.

Let σ2 = (1, 2)(3, 4) be the second approximation of σ. Then

A(xn, xσ2(n)) = A((
1

2
,

1

4
), (

1

4
,

1

2
), (

1

8
,

1

16
), (

1

16
,

1

8
), (

1

25
,

1

25
), (

1

26
,

1

26
), . . . ) =

A((
1

25
,

1

25
), (

1

26
,

1

26
), . . . ) +X

where X = {(0, 0), ( 1
2 ,

1
4 ), ( 1

4 ,
1
2 ), ( 3

4 ,
3
4 )} + {(0, 0), ( 1

8 ,
1
16 ), ( 1

16 ,
1
8 ), ( 3

16 ,
3
16 )} consists of 16 points on the plane.

Therefore A(xn, xσ2(n)) is the union of 16 pieces as in Figure 2.

By Proposition 2.1 the sets, presented on Figures 1 and 2, and the next approximations, tend in the Hausdorff

metric to A(xn, xσ(n)) where xn = 1/2n and σ = (1, 2)(3, 4) . . . . On the other hand, the set on Figure 1

equals D1 := T1(D) ∪ T2(D) ∪ T3(D) ∪ T4(D) where D is the diagonal of [0, 1] × [0, 1], T1(x, y) = 1
4 (x, y),

T2(x, y) = 1
4 (x, y) + ( 1

4 ,
1
2 ), T3(x, y) = 1

4 (x, y) + (1
2 ,

1
4 ) and T4(x, y) = 1

4 (x, y) + ( 3
4 ,

3
4 ). Then the set given on
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Figure 1. Step 1 for σ1.
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Figure 2. Step 2 for σ2.

Figure 2 equals D2 := T1(D1) ∪ T2(D1) ∪ T3(D1) ∪ T4(D1). This suggests that A(xn, xσ(n)) is the IFS fractal

generated by four contractions T1, T2, T3, T4.

Let us consider now the permutations more regular than these from Proposition 2.1 – the permutations ci

will be cycles with the same length.

Let m ∈ N and let c ∈ Sm. Divide N into consecutive segments I1, I2, . . . of length m, that is Ii =

{m(i − 1) + 1,m(i − 1) + 2, . . . ,mi}. Let ci be a permutation on Ii given by ci(m(i − 1) + k) = c(k) for

k = 1, . . . ,m. Define σc = c1c2c3 . . . . We say that σc is a regular permutation generated by c. Let q ∈ (0, 1).

For ε ∈ {0, 1}m put

Tε(x, y) = qm(x, y) +

m∑
n=1

εn

(
qn, qc(n)

)
.
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Proposition 2.2. The achievement set A(qn, qσc(n)) is equal to the IFS fractal generated by the system of

affine contractions {Tε : ε ∈ {0, 1}m}.

Proof. At first note that

A((qn, qσc(n))∞n=m+1) = qm A((qn, qσc(n))∞n=1).

Therefore

A((qn, qσc(n))∞n=1) =

{
m∑
n=1

εn

(
qn, qc(n)

)
: ε ∈ {0, 1}m

}
+ A

(
(qn, qσc(n))∞n=m+1

)
=

=
⋃

ε∈{0,1}m

{
m∑
n=1

εn

(
qn, qc(n)

)}
+ qm A

(
(qn, qσc(n))∞n=1

)
=

=
⋃

ε∈{0,1}m
Tε

(
A
(

(qn, qσc(n))∞n=1

))
.

Thus the achievement set A(qn, qσc(n)) is a fixed point of the set function X 7→
⋃
ε∈{0,1}m Tε(X), and conse-

quently it is the IFS fractal generated by the system of affine contractions {Tε : ε ∈ {0, 1}m}. �

After [4] we say that the iterated function system (f1, f2, . . . , fn) satisfies Moran’s open set condition if and

only if there exists a nonempty open set U , for which we have fi[U ]∩fj [U ] = ∅ for i 6= j and U ⊃ fi[U ] for all i.

Such an open set U will be called a Moran open set for the iterated function system. Assume that f1, . . . , fn are

affine contractions with ratios r1, . . . , rn, respectively. Let s be the unique solution of the equation
∑n
i=1 r

s
i = 1

and assume that (f1, f2, . . . , fn) satisfies Moran’s open set condition. If K is the fixed point of X 7→
⋃
fi(X),

then the Hausdorff dimension dimH(K) of K equals s. For details see [4, Section 6.5, p. 190–199].

Theorem 2.3. Let 0 < q ≤ 1/2. Then the system of affine contractions {Tε : ε ∈ {0, 1}m} fulfills the open set

condition. In particular dimH(A(qn, qσc(n))) = dimH(A(qn)) = − log 2/ log q.

Proof. Note that A(qn) is (f1, f2)-invariant where f1(x) = qx and f2(x) = q + qx. Moreover, f(0, 1) ⊂ (0, 1)

and f1(0, 1) ∩ f2(0, 1) = ∅. Thus (f1, f2) satisfies Moran’s open set condition. If qs + qs = 1, then s = log 2
log(1/q)

and consequently dimH(A(xn)) = log 2
log(1/q) .

Let dmax((x1, x2), (y1, y2)) = max{|x1 − y1|, |x2 − y2|}. Since A(qn, qσc(n)) ⊂ [0, 1]× [0, 1], then

diammax(A
(

(qn, qσc(n))∞n=m+1

)
) = diammax(qm A

(
(qn, qσc(n))∞n=1

)
) ≤ qm.

Moreover, the last inequality is strict if q < 1/2. Note that

dmax

(
m∑
n=1

ε(n)
(
qn, qc(n)

)
,

m∑
n=1

ε′(n)
(
qn, qc(n)

))
≥ qm

if ε 6= ε′. Therefore, the system {Tε : ε ∈ {0, 1}m} satisfies Moran’s open set condition with the Moran’s set

equal to (0, 1)× (0, 1). See also that the unique solution of the equation 2m(qm)s = 1 equals s = log 2
log(1/q) . �

Example 1 continued. By Theorem 2.3 the achievement set has the Hausdorff dimension 1. Moreover, it

is homeomorphic to the Cantor set.
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3. Eight types of achievement sets

As it was mentioned in the Introduction, the achievement set of multigeometric series is one of three types

– finite union of intervals, Cantor set or M-Cantorval. In this section we will prove that the achievement

set of perturbed multigeometric series can be, up to linear isomorphism, of one of the following forms –

Cantor set (Proposition 3.1(i)), product of a Cantor set and an interval (Example 3), product of two intervals

(Proposition 3.1(ii)), product of two M-Cantorvals (Example 4), product of an interval and an M-Cantorval

(Example 5). We truly believe that, using our method, one can prove that such achievement set can be, up to

linear isomorphism, a product of anM-Cantorval and a Cantor set. Note that if perturbation is trivial, namely

σ is the identity, then A(xn, xn) has the same type as A(xn). Hence, perturbed multigeometric series can be

linearly isomorphic to a finite union of intervals or an M-Cantorval. We also conjecture that the achievement

set A(xn, xσ) for (xn) ∈ `1 \ c00 can be, up to homeomorphism, one of eight mentioned types.

Let us start from the following observation.

Example 2. Let q = 1√
2
. Then

A((qn, qn)∞n=3) = {(x, x) : 0 ≤ x ≤ q3

1− q
} = {(x, x) : 0 ≤ x ≤

√
2 + 1

2
}

is the diagonal of the square [0,
√

2+1
2 ]× [0,

√
2+1
2 ]. Note that q + q2 =

√
2+1
2 . Let σ1 = (1, 2). Then

A(qn, qσ1(n)) = A((qn, qn)∞n=3)) + {(0, 0), (
1√
2
,

1

2
), (

1

2
,

1√
2

), (

√
2 + 1

2
,

√
2 + 1

2
)}.

Therefore A(qn, qσ1(n)) contains the diagonal of the square [0,
√

2 + 1]× [0,
√

2 + 1] which is, in turn, equal to

the achievement set A(qn, qn).

By the simple inductive argument and Proposition 2.1 the achievement set A(qn, qσ(n)), where σ = (1, 2)(3, 4) . . . ,

contains the diagonal of the square [0,
√

2 + 1] × [0,
√

2 + 1]. Thus A(qn, qσ(n)) is not homeomorphic to the

Cantor set. Clearly the same argument holds true for any
√

2/2 ≤ q < 1.

As we have proved, the achievement set for geometric series is homeomorphic to the Cantor set if 0 < q ≤ 1/2

and it contains homeomorph of the unit interval if 1/
√

2 ≤ q < 1. Now we prove more general fact which shed

the light on these phenomena.

Proposition 3.1. Let q ∈ (0, 1) and let σ = (1, 2)(3, 4) . . . . Then

(1) A(qn, qσ(n)) is the rhombus with vertices (0, 0); ( q
1−q2 ,

q2

1−q2 ); ( q2

1−q2 ,
q

1−q2 ) and ( q
1−q ,

q
1−q ) if and only if

q ≥
√

2
2 . In particular dimH(A(qn, qσ(n))) = 2 in this case.

(2) A(qn, qσ(n)) is homeomorphic to a Cantor set if and only if q <
√

2
2 . Moreover, the rhombus with vertices

(0, 0); ( q
1−q2 ,

q2

1−q2 ); ( q2

1−q2 ,
q

1−q2 ) and ( q
1−q ,

q
1−q ) is a Moran’s open set for {Tε : ε ∈ {0, 1}2}, and consequently

dimH(A(qn, qσ(n))) = − log 2
log q .

Proof. Let (x, y) ∈ A(qn, qσ(n)). There is a sequence (εn)∞n=1 ∈ {0, 1}N such that x =
∑∞
n=1 εnq

n and y =∑∞
n=1 εnq

σ(n). Let

x1 =

∞∑
n=1

ε2nq
2n, x2 =

∞∑
n=1

ε2n−1q
2n−1, y1 =

∞∑
n=1

ε2nq
2n−1, y2 =

∞∑
n=1

ε2n−1q
2n.

Then x = x1 + x2 and y = y1 + y2. Note that the point (x1, y1) lies on the line y = x/q and the point (x2, y2)

lies on the line y = qx. It shows that any point of A(qn, qσ(n)) can be represented as algebraic sum Atop +Abot

of two sets Atop := {(x, x/q) : x ∈ A(q2n)} and Abot := {(x/q, x) : x ∈ A(q2n)}. Note that Atop + Abot is

homeomorphic to A(q2n)×A(q2n) via the linear isomorphism (x, y) 7→ (x+ qy, qx+ y). If q <
√

2
2 then A(q2n)

is a Cantor set, and so is Atop + Abot. The second part of the assertion (2) can be easily checked. If q ≥
√

2
2
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then A(q2n) is an interval, and so Atop +Abot is the rhombus with edges (0, 0); ( q
1−q2 ,

q2

1−q2 ); ( q2

1−q2 ,
q

1−q2 ) and

( q
1−q ,

q
1−q ). �

Example 3. Let σ = (1, 2, 3)(4, 5, 6) . . . . Let (x, y) ∈ A(qn, qσ(n)). There is a sequence (εn)∞n=1 ∈ {0, 1}N

such that x =
∑∞
n=1 εnq

n and y =
∑∞
n=1 εnq

σ(n). Let

y1 = ε1q + ε4q
4 + . . . , x1 = ε1q

3 + ε4q
6 + . . .

y2 = (ε2q
2 + ε3q

3) + (ε5q
5 + ε6q

6) + . . . , x2 = (ε2q + ε3q
2) + (ε5q

4 + ε6q
5) + . . .

Then x = x1 + x2 and y = y1 + y2. Note that the point (x1, y1) lies on the line y = x/q2 and the point

(x2, y2) lies on the line y = qx. Then A(qn, qσ(n)) = Abot + Atop where Atop := {(x, x/q2) : x ∈ A(q3n)}
and Abot := {(x, qx) : x ∈ A(q, q2; q3)}. Note that A(q3n) is a Cantor set with the Hausdorff dimension

− log 2/(3 log q) if and only if q < 1/ 3
√

2; otherwise it is an interval.

Now, consider the achievement set A(q, q2; q3) of a multigeometric series (q, q2; q3). Note that ∆(Σ) = q2

and diam(Σ) = q+q2. Then A(q, q2; q3) is an interval if q3 ≥ ∆(Σ)
∆(Σ)+diam(Σ) = q

2q+1 , that is if q ≥ q∗ where q∗ is

a positive solution of the equation 2q3 + q2 − 1 = 0. Note that q∗ < 1/
√

2 < 1/ 3
√

2. Therefore the achievement

set A(qn, qσ(n)) is linearly isomorphic to the product of an interval and a Cantor set for q ∈ [q∗, 1/ 3
√

2). Thus

dimH(A(qn, qσ(n))) = 1− log 2/(3 log q) for q ∈ [q∗, 1/ 3
√

2). Moreover, if q < 1/ 3
√

4, then A(q, q2; q3) is a Cantor

set.

Unfortunately, the topological properties of A(q, q2; q3) are not known for 1/ 3
√

4 ≤ q < q∗. The methods

used by the authors in [1] do not work since the elements of Σ = {0, q2, q, q + q2} and the self-similarity ratio

q3 depend on the same parameter q.

Remark. If xn = qn is a geometric sequence with 0 < q ≤ 1/2 and σ ∈ S∞ is regular (see Corollary

5.4 for details) we have dimH(A(xn)) = dimH(A(xn, xσ(n))). This is not longer true for q > 1/2 and reg-

ular permutations σ. Note that dimH(A(xn)) = 1 for q > 1/2. On the other hand if σ = (1, 2)(3, 4) . . . ,

then dimH(A(xn, xσ(n))) = − log 2/ log q for q ≤ 1/
√

2 and dimH(A(xn, xσ(n))) = 2 otherwise. If σ =

(1, 2, 3)(4, 5, 6) . . . , then dimH(A(xn, xσ(n))) = 1− log 2/(3 log q) for q ∈ [q∗, 1/ 3
√

2), and dimH(A(xn, xσ(n))) =

2 for q ≥ 1/ 3
√

2.

Now, using the same method one can prove the following:

Proposition 3.2. Let q ∈ (0, 1) and let σ = (1, . . . , k)(k + 1, . . . , 2k) . . . . Then

(1) A(qn, qσ(n)) is contained in the parallelogram with vertices

(0, 0), (
qk

1− qk
,

q

1− qk
); (

q

1− q
− qk

1− qk
,
q2

1− q
− qk+1

1− qk
) and (

q

1− q
,

q

1− q
)

(2) A(qn, qσ(n)) = Abot +Atop, where

Atop = {
∞∑
n=1

εnk(qnk, qnk−k+1) : εn = 0, 1} and Abot = {
∞∑
n=0

k−1∑
i=1

εnk+i(q
nk+i, qnk+i+1) : εn = 0, 1}.

(3) Abot lays on the line y = qx, Atop lays on the line y = x/qk−1, and these two lines contain two edges of

the parallelogram;

(4) A(qn, qσ(n)) is linearly isomorphic to the product A(q, q2, . . . , qk−1; qk)×A(qk; qk) of achievement sets of a

multigeometric series (q, q2, . . . , qk−1; qk) and a geometric series (qk; qk) via (x, y) 7→ (x+ qy, qk−1x+ y);

(5) the set Abot is a Cantor set if q < k
√

1/2k−1; in this case the parallelogram is a Moran’s open set for

{Tε : ε ∈ {0, 1}k}, and consequently dimH(A(qn, qσ(n))) = − log 2
log q .

(6) the set Abot is an interval if q ≥ q∗ where q∗ is the smallest positive solution of the equation 2qk + qk−1 +

· · ·+ q2 = 1;

(7) the set Atop is a Cantor set if and only if q < k
√

1/2 if and only if Atop is not an interval.
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Example 4. Let q = 1/2 and let σ = (1, 3)(2, 4)(5, 7)(6, 8) . . . . Let (vn) = (3q, 2q; q) be a multigeometric

series. Note that the series (3, 2; 1/4) is a linear transformation of Guthrie-Nymann sequence, and therefore the

achievement set A(3, 2; 1/4) is anM-Cantorval. Let (x, y) ∈ A(vn, vσ(n)). There is a sequence (εn)∞n=1 ∈ {0, 1}N

such that x =
∑∞
n=1 εnvn and y =

∑∞
n=1 εnvσ(n). Let

x1 = ε13q + ε22q + ε53q3 + ε62q3 + . . . , x2 = ε33q2 + ε42q2 + ε73q4 + ε82q4 + . . . ,

y1 = ε13q2 + ε22q2 + ε53q4 + ε62q4 + . . . , y2 = ε33q + ε42q + ε73q3 + ε82q3 + . . . .

Then x = x1 + x2 and y = y1 + y2. Note that the point (x1, y1) lies on the line y = qx, while the point (x2, y2)

lies on the line y = x/q. It shows that any point of A(vn, vσ(n)) can be represented as the algebraic sum

Abot + Atop of two sets Abot := {(x/q, x) : x ∈ A(3q2, 2q2; q2)} and Atop := {(x, x/q) : x ∈ A(3q2, 2q2; q2)}.
Then the achievement set A(vn, vσ(n)) is linearly isomorphic to the product A(3, 2; 1/4) × A(3, 2; 1/4) of two

M-Cantorvals.

Example 5. Let q = 1/ 3
√

4 and let σ = (1, 3, 5)(2, 4, 6)(7, 9, 11)(8, 10, 12) . . . . Let (vn) = (3q, 2q; q) be a

multigeometric series. Let (x, y) ∈ A(vn, vσ(n)). There is a sequence (εn)∞n=1 ∈ {0, 1}N such that x =
∑∞
n=1 εnvn

and y =
∑∞
n=1 εnvσ(n). Let

x1 = (ε13q + ε22q) + (ε73q4 + ε82q4) + . . . , y1 = (ε13q3 + ε22q3) + (ε73q6 + ε82q6) + . . . ,

x2 = (ε33q2 + ε42q2 + ε53q3 + ε62q3) + (ε93q5 + ε102q5 + ε113q6 + ε122q6) + . . . ,

y2 = (ε33q + ε42q + ε53q2 + ε62q2) + (ε93q4 + ε102q4 + ε113q5 + ε122q5) + . . .

Then x = x1+x2 and y = y1+y2. Note that the point (x1, y1) lies on the line y = q2x, while the point (x2, y2) lies

on the line y = x/q. It shows that any point of A(vn, vσ(n)) can be represented as the algebraic sum Abot +Atop

of two sets Abot := {(x/q2, x) : x ∈ A(3q3, 2q3; q3)} and Atop := {(x, x/q) : x ∈ A(3q2, 2q2, 3q3, 2q3; q3)}. The

set Abot is an M-Cantorval for given q.

Now, consider the multigeometric series (3q2, 2q2, 3q3, 2q3; q3). Note that ∆(Σ) = 2q3 and diam(Σ) =

5q2 + 5q3. It is simple to show that q3 ≥ ∆(Σ)
∆(Σ)+diam(Σ) = 2q

5+7q . Thus A(3q2, 2q2, 3q3, 2q3; q3) is an interval.

Therefore the achievement set A(vn, vσ(n)) is linearly isomorphic to the product of an M-Cantorval and an

interval.

4. The orthogonal projection of the achievement sets

For better understanding of the plane achievement set structure we will study its projection onto the line

D̃ = {(x,−x) : x ∈ R}. Let π : R2 → D̃, given by π(x, y) = (x−y2 , y−x2 ), be the projection onto D̃. It is

well-known that A(qn)−A(qn) is homeomorphic to the Cantor set if 0 < q < 1/3, and otherwise A(qn)−A(qn)

is an interval, see [3].

Proposition 4.1. Let xn = qn and σ = (1, 2)(3, 4)(5, 6) . . . . Then

π(A(xn, xσ(n))) = {(x,−x) : x ∈ 1− q
2q

A(q2k)− 1− q
2q

A(q2k)}.

In particular, π(A(xn, xσ(n))) is homeomorphic to the Cantor set iff q < 1/
√

3; otherwise it is an interval.

Proof. We have

π(A(xn, xσ(n))) = {
∞∑
n=1

εn(
xn − xσ(n)

2
,
xσ(n) − xn

2
) : ε ∈ {0, 1}N}.

If n = 2k−1, then xn−xσ(n) = q2k−1− q2k, and if n = 2k, then xn−xσ(n) = q2k− q2k−1. Then the projection

of π(A(xn, xσ(n))) on the first coordinate equals

{
∞∑
k=1

ε2k−1
q2k−1 − q2k

2
+

∞∑
k=1

ε2k
q2k − q2k−1

2
: εn ∈ {0, 1}N} =
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= {1− q
2q

∞∑
k=1

ε2k−1q
2k − 1− q

2q

∞∑
k=1

ε2kq
2k : εn ∈ {0, 1}N} =

=
1− q

2q
A(q2k)− 1− q

2q
A(q2k).

The set 1−q
2q A(q2k)− 1−q

2q A(q2k) has the same topological properties as A(q2k) + A(q2k). Indeed, it is equal

to 1−q
2q A(q2,−q2, q4,−q4, . . . ), so by the well-known properties of achievement sets in the real line, it is the

translation of the set 1−q
2q A(q2, q2, q4, q4, . . . ), and consequently, it is the affine image of A(q2, q2, q4, q4, . . . ).

Such set is an interval for q2 ≥ 1/3 and it is homeomorphic to the Cantor set if q2 < 1/3. Hence, for q <
√

3/3

the projection of A(qn, qσ(n)) is a Cantor set and for q ≥
√

3/3 it is an interval. �

In the same way as Proposition 4.1, one can prove the following:

Theorem 4.2. Let σc be a regular permutation generated by a cycle c of the length m. Then the orthogonal

projection of A(qn, qσ(n)) on D̃ is the affine image of a set

A(qm, q · qm, q2 · qm, . . . , qm−2 · qm, (1 + q + · · ·+ qm−2)qm,

(qm)2, q · (qm)2, q2 · (qm)2, . . . , qm−2 · (qm)2, (1 + q + · · ·+ qm−2)(qm)2, . . . ).

We are interested in the problem how topological properties of this set depend on q. The sequence x, which

achievement set is the orthogonal projection from Theorem 4.2, can be written as x = (1, q, q2, . . . , qm−2, 1 +

q + · · ·+ qm−2; qm). We have

Σ = {1, q, q2, . . . , qm−2, 1 + q + · · ·+ qm−2, q + q2, . . . , 2 + 2q + · · ·+ 2qm−2}.

Thus |Σ| ≤ 2m − 1. Therefore for qm < 1
2m−1 the achievement set A(x) is a Cantor set with measure zero. If

q > 1
2 , then ∆(Σ) = qm−2 and the greatest gap is the first one in Σ. By (1), A(x) is an interval if and only if

qm ≥ qm−2

2 + 2q + · · ·+ 2qm−3 + 3qm−2

what means that q is not less than the positive solution qm of the equation 3qm + 2qm−1 + · · · + 2q2 = 1.

Observe that for m = 2 we have q2 = 1/
√

2 and we obtain the dichotomy from Proposition 4.1: A(x) is either

a Cantor set or an interval. For m > 2 we have qm > m

√
1

2m−1 .

Unfortunately, as in the case of Example 3 and Proposition 3.2, we do know almost nothing on the topological

properties of the set A(x) for m

√
1

2m−1 ≤ q < qm. We only know that it is not a finite union of intervals. At

the end let us observe that if |Σ| < 2m − 1, the set A(x) is an interval.

5. Achievement sets in Banach spaces

Let X be a Banach space. Let X1, X2, . . . be finite subsets of X such that a series
∑∞
n=1 yn is absolutely

convergent for any choice yn ∈ Xn. By A((Xn)∞n=1) we denote the set {
∑∞
n=1 yn : yn ∈ Xn}. Put Y =

∏
i≥1Xi.

If one consider Xi with the discrete topology, then Y , considered with the product topology, is homeomorphic

to the Cantor set. Let F : Y → A((Xn)∞n=1) be given by F ((yn)∞n=1) =
∑∞
n=1 yn.

Lemma 5.1. The function F is continuous. In particular A((Xn)∞n=1) is compact.

Proof. Let δ > 0. Since a series
∑∞
n=1 yn is absolutely convergent for any choice of yn ∈ Xn, the series of

non-negative numbers
∑∞
n=1 d(0, Xn) is convergent where d(0, Xn) = max{‖y‖ : y ∈ Xn} is a distance from

Xn to zero. Find N such that
∑∞
n=N+1 d(0, Xn) < δ/2. Let UN be a basic open neighborhood of (yn)∞n=1 of

the form UN = {(xn)∞n=1 ∈ Y : xn = yn for n ≤ N}. Then

‖
∞∑
n=1

xn −
∞∑
n=1

yn‖ ≤ ‖
∞∑

n=N+1

xn‖ − ‖
∞∑

n=N+1

yn‖ ≤ 2

∞∑
n=N+1

d(0, Xn) < δ
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for every (xn)∞n=1 ∈ UN . Thus F (UN ) ⊂ B(
∑∞
n=1 yn, δ), which means that F is continuous. �

Let Ri = {
∑∞
n=i+1 yn : yn ∈ Xn} = A((Xn)∞n=i+1). By Lemma 5.1, the set Ri is compact. Therefore it is

bounded in X and the following number is well-defined

Ri := inf{r : Ri ⊂ B(x, r) for some x ∈ X}.

Let ti = min{‖x− y‖ : x 6= y, x, y ∈ X1 + · · ·+Xi}. The following is the main result of this section.

Theorem 5.2. (i) If ti > 2Ri for every i ∈ N, then A((Xn)∞n=1) is a Cantor set.

(ii) dimH(A((Xn)∞n=1)) ≤ lim infi→∞(− logni
logRi

), where ni = |X1 +X2 + · · ·+Xi|;
(iii) Assume that X = Rm and ti > 2Ri for every i ∈ N. If inf Ri+1

Ri
> 0, then dimH(A((Xn)∞n=1)) =

lim infi→∞(− logni
logRi

).

Proof. (i) For any i ∈ N find R′i with Ri < R′i < ti/2 and vi ∈ X such that Ri ⊂ B(vi, R
′
i). Note that

A((Xn)∞n=1) ⊂
⋃
{B(x + vi, R

′
i) : x ∈ X1 + · · · + Xi} for every i ∈ N. To see it, fix yn ∈ Xn. Then∑∞

n=1 yn = x+
∑∞
n=i+1 yn where x =

∑i
n=1 yn. Moreover x ∈ X1 + · · ·+Xi and

∑∞
n=i+1 yn ∈ Ri ⊂ B(vi, R

′
i).

Thus
∑∞
n=1 yn ∈ B(x+ vi, R

′
i). Therefore

A((Xn)∞n=1) ⊂
⋂
i≥1

⋃
{B(x+ vi, R

′
i) : x ∈ X1 + · · ·+Xi}.

Now we will show that the function F is one-to-one. Take two distinct points (yn), (y′n) ∈ Y . Let i =

min{n : yn 6= y′n}. Then F (yn) ∈ B(y1 + · · · + yi + vi, R
′
i), F (y′n) ∈ B(y′1 + · · · + y′i + vi, R

′
i) and ti ≤

‖(y1 + · · ·+ yi)− (y′1 + · · ·+ y′i)‖. Since R′i < ti/2, then B(y1 + · · ·+ yi + vi, R
′
i)∩B(y′1 + · · ·+ y′i + vi, R

′
i) = ∅.

Thus F as a continuous bijection is a homeomorphism. Therefore A((Xn)∞n=1) is a Cantor set.

(ii) Let s > lim infi→∞(− logni
logRi

). We need to show that Hs
(

A((Xn)∞n=1)
)
<∞. Let 0 < δ < 1. Find i ≥ 1

such that − logni
logRi

< s and Ri < δ. Next, find t such that − logni
logRi

< t < s and n
−1/t
i < δ. Then Ri < n

−1/t
i .

Put R′i = n
−1/t
i . Then {B(x+ vi, R

′
i) : x ∈ X1 +X2 + · · ·+Xi} is a δ-covering of A((Xn)∞n=1). Then for this

covering we have ∑
x∈X1+X2+···+Xi

diam(B(x+ vi, R
′
i))

s = ni(2R
′
i)
s < 2sni(R

′
i)
t = 2s.

Therefore Hsδ
(

A((Xn)∞n=1)
)
< 2s for every δ > 0. Hence Hs

(
A((Xn)∞n=1)

)
≤ 2s <∞.

(iii) Let s < lim infi→∞− logni
logRi

. There is i0 such that − logni
logRi

> s for every i ≥ i0. Therefore for every i ≥ i0
there is R′i such that Ri < R′i < min{ti/2, 2Ri} and − logni

logR′i
> s. For i < i0 take any R′i with Ri < R′i < ti.

Since inf Ri+1

Ri
> 0, then inf

R′i+1

R′i
≥ inf Ri+1

2Ri
> 0. Since F is one-to-one, ni = |X1 + · · ·+Xi| = |X1| · · · |Xi|.

For i ≥ 1 let µi be a uniform probability distribution on a finite set Xi, that is µi({t}) = 1/|Xi| for every

t ∈ Xi. Let µ =
∏
i≥1 µi be a probability product measure on Y =

∏
i≥1Xi. Let λ be a probability measure on

A((Xn)∞n=1) defined as λ(E) = µ(F−1(E)). Since F is one-to-one, for x ∈ A((Xn)∞n=1), x =
∑∞
i=1 xi, xi ∈ Xi

we have

λ(B(vi +

i∑
n=1

xn, R
′
i)) = µ(F−1(B(vi +

i∑
n=1

xn, R
′
i))) = µ({x1} × . . . {xi} ×

∏
k>i

Xk) =
1

|X1| · |X2| · · · |Xi|
.

We will need the following.

Claim. There is M > 0 such that for any ρ > 0 there is i ∈ N such that ρ > R′i and

|{x ∈ X1 +X2 + · · ·+Xi : B ∩B(x+ vi, R
′
i) 6= ∅}| ≤M

for every ball B with radius ρ.

Proof of the Claim. Let B be a ball with radius ρ and let i be the smallest natural number such that R′i < ρ.

Let B′ be a ball, concentric with B with radius 3ρ. The number M is not greater than the number M ′ of balls
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B(x+ vi, R
′
i), x ∈ X1 + · · ·+Xi, contained in B′ which, in turn, fulfills the inequality M ′(R′i)

m < 3mρm (since

X = Rm, the sum of volumes of B(x+ vi, R
′
i) cannot exceed the volume of B′). Put τ := inf

R′i+1

R′i
> 0. Then

M <

(
3ρ

R′i

)m
<

(
3R′i−1

R′i

)m
≤
(

3

τ

)m
.

In both cases M does not depend on i.

Let 0 < δ < min{R′i0 , 1} and ε > 0. Take a δ-covering Up of A((Xn)∞n=1) such that

∞∑
p=1

diam(Up)
s < Hsδ(A((Xn)∞n=1)) + ε.

We can cover A((Xn)∞n=1) with balls Bp with Up ⊂ Bp and diam(Bp) < 2 diam(Up). Then

∞∑
p=1

diam(Up)
s ≥ 2−s

∞∑
p=1

diam(Bp)
s.

Using the Claim for ρ = diam(Bp)/2 we find i such that λ(Bp) ≤
∑
λ(B(x + vi, R

′
i)), where the sum is over

all balls B(x+ vi, R
′
i) such that Bp ∩B(x+ vi, R

′
i) 6= ∅, x ∈ X1 + · · ·+Xi and diam(Bp) > 2R′i. Moreover

λ(Bp) ≤
M

|X1| · |X2| · · · |Xi|
=
M

ni
< M(R′i)

s < M

(
diam(Bp)

2

)s
.

Therefore

1 ≤
∞∑
p=1

λ(Bp) <
M

2s

∞∑
p=1

(diam(Bp))
s ≤M

∞∑
p=1

diam(Up)
s < M(Hsδ(A(Xn)∞n=1) + ε).

This shows thatHs(A(Xn)∞n=1) > 0, and consequently by (ii) we have dimH(A(Xn)∞n=1) = lim infi→∞(− logni
logRi

).

�

Let us remark that one can easily generalize Theorem 5.2 for the achievement set in a Polish Abelian

group considered with an invariant metric. Then the condition X = Rm in part (iii) of Theorem 5.2 can be

change to the following condition for groups with an invariant metric: there is a constant C > 0 such that

for every R > 0 any ball of radius R contains at most C many pairwise disjoint balls of radius R/2. This

condition is fulfilled for Rm and in ZN
2 considered with an invariant metric d((xn), (yn)) = 2−min{n:xn 6=yn}.

It fails in infinitely dimensional Banach spaces and in the group
∏∞
n=2 Zn endowed with an invariant metric

d((xn), (yn)) = 2−min{n:xn 6=yn}.

Now we present several applications of Theorem 5.2.

Let
∑∞
n=1 xn be an absolutely convergent series in a Banach space X. For an increasing sequence 1 = k0 <

k1 < k2 < . . . of natural numbers we define

Xi = {
ki−1∑
n=ki−1

εnxn : εn = 0, 1},

ti = min{‖x− y‖ : x 6= y and x, y ∈ X1 +X2 + · · ·+Xi}

and

ri = max{‖
∞∑
n=ki

εnxn‖ : εn = −1, 0, 1} = diam(Ri).

Corollary 5.3. (i) If ti > ri for every i ∈ N, then A(xn) is a Cantor set;

(ii) dimH(A(xn)) ≤ lim infi→∞(− logni
log ri

), where ni = |X1 +X2 + · · ·+Xi|;
(iii) Assume that X = Rm and ti > ri for every i ∈ N. If inf ri+1

ri
> 0, then dimH(A(xn)) = lim infi→∞(− logni

log ri
).
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Proof. It is enough to show that ri = 2Ri. Clearly ri ≤ 2Ri. Note that

ri = max{‖
∞∑
n=ki

εnxn‖ : εn = −1, 1}.

Indeed, let y =
∑∞
n=ki

εnxn and εn = 0 for some n ≥ ki. Then ‖y‖ ≤ ‖y+ xn‖ or ‖y‖ ≤ ‖y− xn‖. This means

that we enlarge the value of ‖
∑∞
n=ki

εnxn‖ changing each εn = 0 to ±1.

Let x = 1
2

∑∞
n=ki

xn. Then for every εn ∈ {−1, 1}N we have

Ri ≤ max
(εn)
‖x−

∞∑
n=ki

εnxn‖ = max
(εn)

1

2
‖
∞∑
n=ki

εnxn‖ = ri/2.

Therefore ri = 2Ri. �

Note that if
∑∞
n=1 xn is quickly convergent, that is if ‖xn‖ >

∑
i>n ‖xi‖, then for ki = i we have ti > ri.

Therefore the achievement set of a quickly convergent series is a Cantor set. This shows that our result

generalizes two first parts of Kakeya Theorem.

Let us go back to the achievement set of perturbed geometric series on the real plane. Let σ = c1c2c3 . . .

and let |ci| stand for the length (the cardinality of domain) of ci.

Corollary 5.4. (i) Let 0 < q <
√

2/2. Then dimH(A(qn, qσ(n))) ≤ − log 2/ log q. In particular the achievement

set A(qn, qσ(n)) has Lebesque measure zero.

(ii) Let 0 < q ≤ 1/2. Assume that there is M such that |ci| ≤M for every i ≥ 1. Then dimH(A(qn, qσ(n))) =

− log 2/ log q.

(iii) Let q = 1/2. Then dimH(A(qn, qσ(n))) = 1.

Note that for q ≥
√

2/2 the estimation dimH(A(qn, qσ(n))) ≤ − log 2/ log q is valid but trivial. This follows

from the fact that dimH(B) ≤ 2 < − log 2/ log q for any compact set B ⊂ R2.

Proof. (i) We will use the notation from Corollary 5.3. Let k0 = 1 and kn+1 = kn + |cn|. Then Xi =

{
∑ki−1
n=ki−1

εn(qn, qσ(n)) : εn = 0, 1}. Since σ(n) ≥ n for every n ≥ ki, σ({n, n+ 1, . . . }) = {n, n+ 1, . . . } and

ri = diam(Ri) = diam{
∑
n≥ki

εn(qn, qσ(n)) : εn = 0, 1} = ‖
∑
n≥ki

(qn, qσ(n))‖ = ‖(
∑
n≥ki

qn,
∑
n≥ki

qσ(n))‖ =

‖( qki

1− q
,
qki

1− q
)‖ =

qki

1− q
‖(1, 1)‖ =

√
2qki

1− q
.

Note that ni = |X1 + · · ·+Xi| ≤ 2|c1|+...|ci| = 2ki−1. By Corollary 5.3 we obtain

dimH(A(qn, qσ(n))) ≤ lim inf
i→∞

− log ni
log ri

≤ lim inf
i→∞

− (ki − 1) log 2

log
√

2
1−q + ki log q

= − log 2

log q
.

(ii) Note that

ri+1

ri
=
qki+1

qki
=
qki+|ci|

qki
= q|ci| ≥ qM > 0.

Let m(k) = |c1| + · · · + |ck|. Note that A((qn, qσ(n))n≥m(k)+1) is contained in the square Sk = [0, q
m(k)+1

1−q ]2.

Then A(qn, qσ(n)) is covered with 2m(k) squares of the form

Cε = (

m(k)∑
n=1

εnq
n,

m(k)∑
n=1

εnq
σ(n)) + Sk

where ε = (εn) ∈ {0, 1}m(k). Note that for each k the family {Cε : ε ∈ {0, 1}m(k)} of squares is pairwise disjoint

if q < 1/2. Then ri ≤
√

2qm(k)+1

1−q <
√

2qm(k) ≤ ti. Therefore by Corollary 5.3 we have dimH(A(qn, qσ(n))) =

− log 2/ log q.



14 ARTUR BARTOSZEWICZ AND SZYMON G LA̧B

(iii) By (i) we already know that dimH(A(1/2n, 1/2σ(n))) ≤ 1. Let δ > 0, s > 0. Note that for each k

the family {Cε : ε ∈ {0, 1}m(k)} of squares is pairwise non-overlapping if q = 1/2. Let {Ui} be δ-covering of

A(1/2n, 1/2σ(n)) such that
∞∑
i=1

diam(Ui) < H1(A(1/2n, 1/2σ(n))) + s.

By the proof of Theorem 5.2 the measure H1(A(1/2n, 1/2σ(n))) is finite, and therefore
∑∞
i=1 diam(Ui) <∞. We

can cover A(1/2n, 1/2σ(n)) with open balls Bi with diam(Bi) < 2 diam(Ui). Since A(1/2n, 1/2σ(n)) is compact,

there is t such that B1, . . . , Bt cover A(1/2n, 1/2σ(n)) and
∑∞
i=t+1 diam(Bi) < s. Let δ′ = min{diam(Bi) :

i ≤ t}. As in (i) we find k such that
√

2/2m(k) < δ′. Let J1, . . . , Jn be subsets of {0, 1}m(k) defined as

Ji = {ε : Cε∩Bi 6= ∅}. Since the family {Cε : ε ∈ {0, 1}m(k)} is pairwise non-overlapping,
⋃
i<t Ji = {0, 1}m(k).

Let B′i be an open ball concentric with Bi with diam(B′i) = 3 diam(Bi). Then Cε ⊂ B′i for every ε ∈ Ji. If

ε, ε′ ∈ {0, 1}m(k) are distinct, then∣∣∣∣∣∣
m(k)∑
n=1

ε(n)1/2n −
m(k)∑
n=1

ε′(n)1/2n

∣∣∣∣∣∣ ≥ 1/2m(k).

Therefore the set {π1(Cε) : ε ∈ {0, 1}m(k)} of projection on the first coordinate of sets Cε consists of non-

overlapping intervals on the line. Similarly {π2(Cε) : ε ∈ {0, 1}m(k)} consists of non-overlapping intervals on

the line. Then

|Ji|diam(Cε) ≤ diam(B′i) = 3 diam(Bi),

and consequently ∑
ε

diam(Cε) ≤
t∑
i=1

∑
ε∈Ji

diam(Cε) ≤
t∑
i=1

∑
ε∈Ji

|Ji|diam(Cε) ≤

≤
t∑
i=1

3 diam(Bi) ≤
∞∑
i=1

3 diam(Bi) ≤
∞∑
i=1

6 diam(Ui) < 6(H1(A(1/2n, 1/2σ(n))) + s).

Therefore H1(A(1/2n, 1/2σ(n))) > 0. Consequently dimH(A(1/2n, 1/2σ(n))) = 1. �

Proposition 5.5. The set of all permutations σ of the form c1c2c3 . . . is residual in S∞.

Proof. Note that the set

Xn :=
{
σ ∈ S∞ : ∃k ≥ n σ({1, . . . , k}) = {1, . . . , k}

}
is open and dense in S∞. Next, see that

∞⋂
n=1

Xn =
{
σ ∈ S∞ : ∀n∃k ≥ n σ({1, . . . , k}) = {1, . . . , k}

}
=

=
{
σ ∈ S∞ : ∃k1 < k2 < . . . ∀i σ({ki + 1, . . . , ki+1}) = {ki + 1, . . . , ki+1}

}
which is in turn the set of all permutations σ of the form c1c2c3 . . . . �

Corollary 5.6. The assertion of Corollary 5.4(iii) holds for almost every, in the sense of Baire category,

permutation σ ∈ S∞.

Problem 5.7. Let xn = qn, 0 < q ≤ 1/2. Let σ ∈ S∞ be an arbitrary permutation. Is it true that

dimH(A(xn, xσ(n))) = log 2
log(1/q)?
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If X is an infinitely dimensional Banach space, the achievement set A(xn), as a compact set, is small in

many senses (nowhere dense, porous, Haar null etc.) in X. The next example shows that it can be big in other

meaning, for example it can be homeomorphic to the Hilbert cube and in particular of infinite dimension.

Example 6. Let E1, E2, . . . be a partition of N into pairwise disjoint infinite sets. Let Ei = {mi1 < mi2 <

mi3 < . . . }. Let xn ∈ c0 be defined as follows: xn = 1
2i+k
· ei if n = mik where ei(j) = 1 if i = j and ei(j) = 0

otherwise. Then
∑∞
n=1 ‖xn‖ =

∑∞
i=1

∑∞
m=1

1
2i+k

= 1. Then the achievement set A equals [0, 1] × [0, 1/2] ×
[0, 1/4]× . . . , and consequently it is homeomorphic to the Hilbert cube [0, 1]N.
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