CONVERGENCE OF SERIES ON LARGE SET OF INDICES

SZYMON GLAB AND MICHAL OLCZYK

e}
ABSTRACT. We prove that if ) a, = oo and (an) is non-decreasing, then
n=1
> an = oo for any set A C N of positive lower density. We introduce a
ncA
Cauchy - like definition of Z-convergence of series. We prove that the Z-
convergence of series coincides with the convergence on large set of indexes
OO
if and only if 7 is a P-ideal. It turns out that Z-convergence of series > an
n=1
implies Z-convergence of (an) to zero. The converse implication does not
hold for analytic P-ideals and it is independent of ZFC that there is Z ideal
of naturals for which Z-convergence of (an) to zero implies Z-convergence

e}
of series > an = oo for every sequence (ap).
n=1

1. INTRODUCTION

The convergence of sequence z,, with respect to an ideal Z is a natural gen-
eralization of the usual convergence and the statistical convergence. The paper
by Kostyrko, Saldt, and Wilczyriski [14] is a well-written introduction to this
topic. Recently the large progress was done in applications of Z-convergence in
analysis (see [1], [7], [9], [10], [15] and [12]).

&)
In this note we are interested in the Z-convergence of a series > a,. There

n=1
are two approaches to that concept. The first is to consider the Z-convergence
k ~
of sequence of partial sums > a, which was considered by Dindos, Saldt and
n=1

o]

Toma in [5]. The problem with this definition of Z-convergence of a series . a,
n=1

is that it coincides with the usual convergence if the terms a,, are nonnegative.

o0
The second approach is the following. We say that > a,, is Z-convergent if it is

n=1
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convergent on a large set of indexes, namely > a,, is convergent for some A with
neA

[ee]
N\ A € Z. The problem with this definition is that an Z-limit of > a,, is not well
n=1
defined. Indeed, since we assume that Z contains all singletons, then if > a, is
neA
convergent and N\ A € Z, then also > a, is convergent and N\ (A\ F) € Z
neA\F
for any finite F'. Moreover, in general, the Z-convergence of a sequence does not
imply the convergence on a large set of indexes. Kostyrko, Salat, and Wilczynski
in [14] proved that such an implication holds if and only if 7 is a P-ideal. We
will focus on the second approach and we will show how to omit the mentioned
problems and define an Z-convergence of series (see Definition 5).

Each of whose definitions of Z-convergence of series generalizes the usual
notion of convergence. Therefore the most interesting question is under which
conditions a divergent series is Z-convergent. First, we deal with this problem
in a special case of Z-convergence, namely the statistical convergence. It was
proved in [16] that if A C N is not of natural density zero, then

neA

It is a simple observation that if we change (%) to any sequence (a,) with

oo
> an = oo then > a, = oo need not hold even for A C N of density one.
n=1 neA
Indeed, take any infinite set B C N of density zero and define (a,,) as a charac-
teristic function of B. One can produce a similar example with a,, — 0.

Here we consider the following question. Can we prove a similar statement
assuming that (a,) is non-increasing? In Section 1 we show that

E an = 00

o0
provided " a, = oo and A C N has a positive lower density. Additionally, we

n=1

o0
give an example of a non-increasing (a,) with 3 a, = oo, lim #2+L = 1 such
n=1 "
that > a, < oo for some A C N with a positive upper density.
neA
In Section 2 we introduce the notion of ideal convergence of series. Roughly

o]
speaking > a, is Z-convergent if Y a, < oo with N\A € Z. We give some
=1 A
n ne ~
equivalent condition for Z-convergence of 3 a,.
n=1
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At the end we prove that it is independent of ZFC that there is a P-ideal
7 such that > a, is Z-convergent if and only if a,, — 0 with respect to Z for

n=1
every sequence (a,). On the other hand, for any analytic P-ideal Z, there is an
o]

Z-divergent series Y a, such that a,, — 0.
n=1
Now, recall some basic definitions. A family Z of subsets of N is called an

ideal if it fulfills the following conditions:

(1) if A€ Z and B C A, then B € T,
(2) it A,B€Z, then AUB€T.

We say that Z is admissible if {n} € Z for n € N, and Z is proper if N ¢ 7.
A proper ideal T is called P-ideal, if for each sequence (A,),-, of sets from Z
there exists Ay, € Z such that A, \ Ay is finite for all n € N. A proper ideal
7 has (AP) property if for any pairwise disjoint sequence (A,), -, of sets from
7 there exists a sequence (B,), -, such that A;\B; is finite set for all n € N

and |J B, € Z. It turns out that notions of P-ideals and ideals with (AP)
neN
property coincides, see e.g. [1]. In the sequel we will need a necessary condition

for non-P-ideals.

Lemma 1. Let Z be an admissible ideal which is not a P-ideal. Then there is a
sequence (A,) of pairwise disjoint infinite sets from I such that for any A € T
there is n such that the set A, \ A is infinite.

Proof. Since Z is not P-ideal, there is a sequence (B,,) such that B,, € 7 and
for every A € T there is n such that B, \ A is infinite. Let A; = B; and

n—1
A, = B, \ U Bs. Note that among Ay, As, ... there are infinitely many infinite
k=1

sets. Suppoge to the contrary that all but finitely many sets from A;, A, ... are
finite. Let A be the union of all A; which are infinite. Thus A isin Z and B,, \ A
is finite for each n which yields a contradiction.

Let K = {j : A, is infinite}. For ip = minK let A = |J A;. For any

=0
i € K\ {iop} we define A, in the following way. If A;;; is infinite then put
Al = A;, otherwise let k = max{j > i : A;11, Aito,..., A; are finite} and put
Al =A;U---UAy,. Then {4 :i € K} is a family of pairwise disjoint infinite
sets with B; = J{A4}. : k <i,k € K}.

Suppose that there is C' € Z such that the set A} \ C' is finite for each i € K.
Then the set B, \ C = {4} : k< i,ke K}\C=U{4,\C :k <i ke K}
is finite for ¢ € K. If ¢ ¢ K then either B; is finite or there is j € K with
j < tand B;\ Bj is finite and in the both cases B; \ C is finite. This yields a

contradiction. O
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A function ¢ : P(N) — [0, 00] is called a submeasure if ¢(A) < (AU B) <
p(A) + ¢(B) for any A,B € P(N). A submeasure ¢ is called lower semicon-
tinuous if lim (A Nn) = p(A4). By Exh(¢) denote the set of all A C N with

n— oo

lim p(A\n) = 0. The celebrated Solecki’s characterization states that an ideal
n—oo

T is an analytic P-ideal if and only if it is of the form Exh(p) for some lower
semicontinuous submeasure ¢ on N.
Let A CN. By
d (A) = lim sup AL i n}|’
n—00 n

we denote the upper density of A where |A| stands for the cardinality of A. In
a similar way we define the lower density d(A) of A. If d(A) = d(A), then this
common value we denote by d(A) and we call it the density of A. It is well
known that the family Z, of all subsets A of N with d(A4) = 0 is an analytic
P-ideal.

Let (ay),—, be asequence of positive numbers. Let Z(,, )= {A CN: > ap< oo} .
ncA

Then Z,,) is called a summable ideal. If ) a, = oo, then Z,,) is a proper
n=1
P-ideal.

2. DIVERGENT MONOTONE SERIES DIVERGES ON LARGE SETS OF INDEXES
Theorem 2. Let (ay,),—, be a non-increasing sequence of positive numbers such

o0
that lim a, = 0 and ). a, = oco. Assume that A C N has a positive lower
n—00 ne1
density. Then > a, = co.
neA
Proof. Since A has a positive lower density, there exists m € N such that d(A) >
%. By the definition of lower density there is ng such that

n m
for every n > ng. In particular, for n = mng > ng, the set AN{1,2,...,mng}
contains at least ng elements. Moreover, for n = 2mny, the set AN{1,2,...,2mng}

contains at least 2ng elements. Thus the following inequalities hold

mngo

Z ap 2 Z ag

ke An{1,...,mno} k=(m—1)ng+1

and
mno 2mmng

Z ai > Z ar + Z ag.

ke An{1,....2mno} k=(m—1)no+1 k=(2m—1)no+1
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Now let ¢ > 2. By the same argument as above we obtain that

mno imng

Z ap > Z ag + ... + Z ar. (2)

ke An{1,....imno} k=(m—1)no+1 k=(im—1)ng+1

oo (im—p+1)ng

Let By = > > ay for p=1,...,m. By (2) we have > ax > Bj. Since

=1 k=(im—p)no+1 keA
, oo (im—p+1)ng
(ax) is non-increasing, then By < By < ... < By,. If B, = > > ay,

1=2 k=(im—p)no+1
then B; < Bé < ... < B;n < Bj and B;, < oo iff B, < oo. Suppose that By
is finite. Then each B; is also finite, and therefore every B, is finite. But this

(oo}
means that By + By + ... + By, = Y. ay is finite and we reach a contradiction.
k=1
Thus By is infinite which implies that > ay is infinite. O
keA

We cannot strengthen Theorem 2 assuming only that the set A has positive
upper density. Even if the assumption that lim % =1 is added.
n—oo n
Proposition 3. There exists a non-increasing sequence (an)flo:1 of positive reals
[ee]
such that lim a, =0, . a, = oo, lim a;—“ =1, and there is A C N with
n—00 n—1 n—oo “n
d(A)=1,d(A) =0 and > a, < co.
neA
Proof. Consider a sequence (a,,) of the form

1 11 1 1 1 1 1 1 1
72737'.-7’”%7(n1+1)27(n1+2)27-.~;n%7n%+17ng+2 . . n§7

1 1 1
(ng+1)2" (ng +2)2"" """ n?

[ee]
The sequence (a,) is a mixture of elements of the harmonic series . 1/n and
n=1

An41

n

the 2-series > 1/n?. Clearly (a,,) is decreasing and lim = 1 for any choice
n=1 n—roo

ny <ng < .... Let A consist of those indexes where elements of the 2-series are

used in the definition of (a,). We can choose integers ny, such that

1 1 1
+ +oot >1
n§j+1 n%j+2 ngﬂ_l
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— (o]

for every j, and such that d(4) = 1. Clearly > ar < co and ) a, = c0. By
keA n=1

Theorem 2 the set A does not contain a subset of positive density, and therefore

d(A) = 0. O
Corollary 4. Let a € (0,1]. Then Y. L = oo for A ¢ I(l). In particular if

_ neA e "
d(A) >0 then Y. -1 =occ.
ncA

It is well known that I(

1) C Z;. It is not true in general that Z,,) C Zg even
if one assumes that (a,),. ; is non-decreasing. This follows from Proposition 3.
Remark. An anonymous referee pointed out that Theorem 2 was actually

proved by Salat in [17] using a substantially different method.

3. Z-CONVERGENCE OF SERIES
Dindos, Saldt and Toma introduced in [5] the statistical convergence of series

o0
in the following way. A series Y. a, is statistically convergent to some L pro-

n=1

n
vided the sequence s,, = Y a; of partial sums converges statistically to L. In a
k=1
similar way, one can define a convergence of a series with respect to Z, namely as

the Z-convergence of partial sums. Our approach is different. Since we cannot
define an Z-sum of a series, we define Z-convergence of series by the Cauchy
condition. Let us mention that Cervenansky, Salat and Toma proved in [4] that
in general these two definitions of Z-convergence of a series do not coincide and
any of them do not imply the other.

Definition 5. Let T be an admissible ideal. We say that a series Y ay, is Z-

n=1
convergent if it satisfies the T-Cauchy condition, that is if for every € > 0 there
are ne € N and A. € T such that

Z am| < €

me{l,....k}\ A

forany k >1>n..

oo

Definition 6. Let Z be an admissible ideal. We say that a series Y a,, satisfies
n=1

the (*)-Z-Cauchy condition if there exists set A € T such that Y. a, satisfies
neN\ A

o0
the Cauchy condition. We say that a series > a, is (*)-I-convergent if there
n=1
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(o]
is A € T such that > a, converges. Clearly the series . a, satisfies the
neN\A n=1
(*)-Z-Cauchy condition if and only if > an is (*)-I-convergent.
neN\A
Now, we will show how these two definitions of Cauchy conditions are related
each to other. The following is a counterpart of [1, Proposition 3].

o0
Lemma 7. Let 7 be an admissible ideal. If Y a, satisfies the (*)-Z-Cauchy

n=1
condition, then it satisfies the Z-Cauchy condition.

Proof. Since > a, satisfies the (*)-Z—Cauchy condition, there is A € Z such

n=1
that > a, satisfies the Cauchy condition. Let € > 0 and choose n. € N\A
neN\A
such that > am| < e forany k > 1 > n.. Put A. = AU{1,...,n:}.
me{l,...,k}\A

Then A. € Z and am| < e forany k > 1 > n.. O

me{l,....k}\ Ac

It turns out that the reverse implication is true if and only if Z is a P-ideal.
This is a counterpart of [14, Theorem 3.2].

Theorem 8. Let T be an admissible ideal. Then the following are equivalent:
(1) Z is a P-ideal,
(2) > ay satisfies the T-Cauchy condition if and only if satisfies the (*)-I-

n=1
Cauchy condition.

[ee]

Proof. Let Z be a P-ideal and assume that ) a,, satisfies the Z—Cauchy condi-
n=1

tion. Then for every j € N there exist A; € Z and ¢ such that for any & > 1> ¢

Z am

me{l, . kP\A;
that A;\ A is finite for all j € N. Fix j € N and let p € N be such that
AN\Aw C {1,...,p}. Thus for any k > 1 > pif k,l ¢ A;, then k,l ¢ A and

we have < % Since 7 is a P-ideal, there exists A, € Z such

therefore > am | < %
me{l,..k}\ Ao
Assume now that Z is not a P-ideal. Then by Lemma 1 there is a sequence
Aq, Ao, ... of pairwise disjoint infinite sets in Z such that for any A € 7 there is n
such that A,, \ A is infinite. Let {k}" < k¥ < ...} be an increasing enumeration
of A,. Define agn = (=1)"/2" and a,, = 0 if m ¢ (J,— | An.
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Let € > 0. There is n with 1/2" < e. Take m < k and consider
k

t:= Z Ay, -

m=l,mg¢A1U---UA,,

[&.°]
By the construction of series > a,,, we have

m=1
1 1 1
‘t|<ﬁ+w+"'—ﬂ<€.

Hence > a,, fulfills the Z-Cauchy condition.
m=1

Let A € Z. Let ng be such that A, \ A is infinite. Then the set {s,, : m ¢ A}
contains infinitely many elements of the form (—1)¢/2m°. Therefore 5. a,,

meN\ A
does not converge, and thus . a,, does not fulfill the Cauchy condition.
meN\A
Hence Y a, does not fulfill the (*)-Z—Cauchy condition. O

m=1

o0
4. WHEN Z-lim,, a,, = 0 IMPLIES Z-CONVERGENCE OF Y a,

n=1
In this section we will prove two facts. The first fact states that for a large

o0
class of ideals, namely analytic P-ideals Z, there is an Z divergent series > a,
n=1

such that Z- lim a,, = 0. The second fact states that there is a maximal P-ideal
n— oo

7 such that Z-lim, a,, = 0 implies the Z-convergence of Y a,. But first let us
n=1
note the following basic fact.

o0

Proposition 9. Assume that Y a, is Z-convergent. Then (ay) is Z-convergent
n=1

to zero.

oo
Proof. Since Y. a, is Z-convergent, then

n=1
Ve>034, €T Vh>1>n | > an|<e.
me{l,....k}\Ae
Thus |am,| < € for every m > n., m ¢ A.. Hence (ay) is Z-convergent to
Zero. ]

Theorem 10. For any analytic P-ideal T there exists an Z-divergent series

o0
> ay such that (ay),., is I-convergent to zero.
n=1
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Proof. Let ¢ be a submeasure witnessing that Z is an analytic P-ideal. Let

M’ = lim ¢ (N\n) > 0. Since Z does not contain N, then M’ is a positive
n—oo

real number or M’ = co. By M denote M'/2 if M’ is finite or 1 if M’ = oc.

Let 0 = ng < n1 < ny < n3 < ... be such that ¢ (ngy1\nk) > M. Let Ay =

{n € N:ni_1 <n <ng} and for every index n from Ay define a,, = 1/k. It can

(oo}
be easily seen that |J Ax = N and the sequence (a,,), ., is Z-convergent to zero.

k=0
Let A C N such that N\ A € Z. Therefore li_>m »((N\A) \ n) = 0. Now, we
n—oo

want to show that there exists [ € N such that for all n > [ we have 4, N A # .

Suppose to the contrary that for any [ € N there exists k > [ that Ay N A = ().

This means that lim ¢((N\A)\ n) > M which is a contradiction. Hence series
n—roo

o0 o0
> ay is Z-divergent since it contains a subseries of the form Y 1/n. O
n=1 n=~k

Now, we will prove that Theorem 10 is not true for all P-ideals. To do that
we will need the following set-theoretic statement proved by Bartoszewicz, Glab
and Wachowicz in [2]. We refer the reader to [2] for the notation used in this
section.

Theorem 11. Assume that p = ¢. Let 7 < p. Suppose that By, Bs are two
properties of sequences x € RY such that:
(a) for all x € RY and K € [N|N, if 21k has By, then there is L € [N]Y,
L C K, such that x;, has By;
(b) By is closed under taking subsequences, i.e. for allz € RN, L, K € [NJN,
if L C K and xx has By, then x; has B;.
If a filter F is T-generated, then F can be extended to a filter F' such that for
any x € RN and K € F', if x1x has By, then there is L € F', L C K, such that
TL has BQ .

Theorem 12. Assume that p = ¢. There exists a P-ideal T such that if (ay),.,

oo
is Z-convergent to zero then the series Y a, is I-convergent.

n=1
Proof. We say that a sequence (a,) has the property B; if (a,) is bounded,
and we say that a sequence (a,) has the property By if (a,) is convergent and

> (an — limy ag) is finite. Clearly conditions (a) and (b) of Theorem 11 are

n=1
fulfilled. Let F be a Frechet filter, i.e. a filter which consists of cofinite subsets
of N. Then by Theorem 11 there is a filter 7/ D F such that if (a,,) is bounded

on aset K € F/, then > (a,—limy aj) converges on a set L € F'. By 7’ denote
n=1

the dual ideal to F'. In particular we obtain that °°(Z’) = ¢*(Z’) and therefore

by [14, Theorem 3.2] and [6, Proposition 3] Z’ is a maximal P-ideal.
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Let (ay) be Z'-convergent to zero. Since I’ is P-ideal there is L € F’ such
that lim,cr, a, = 0. By the Z’-boundedness of (a,) there is K € F’ such that

> ay is finite, which means that ) a, is Z’-convergent. O
keK n=1

The anonymous referee suggested that the notion of rapid filter is crucial for
the property of ideals studied in this section. A filter F on N is called a rapid
filter, if for any sequence (e,,) such that e, — 0, there exists X € F such that

> en < 00. (There are several equivalent definitions of rapid filters, see e.g.
neX
[3, Lemma 4.6.2].)

Proposition 13. Let Z be an ideal on N. The (*)-Z-convergence of (a,) to
o0
zero implies the (*)-I-convergence of series Y ap for every sequence (ay) of

n=1
real numbers if and only if the filter F dual to T is a rapid filter.

Proof. Assume that F is not a rapid filter. Then there is a sequence (&,,) tending

to zero such that Y &, = oo for every X € F. Note that (e,) is (*)-Z-
neX

[e.°]
convergent to zero while Y a, is not (*)-Z-convergent.
n=1
Assume now that F is a rapid filter. Let (a,) be a sequence of real numbers
which is (*)-Z-convergent. Thus there is a set A € F such that lirr}1 an, = 0. Put
ne

a, =ay if n € A and a], = 0 otherwise. Then (a],) tends to zero. Since F is a

rapid filter, there is B € F such that ) a), < co. Note that AN B € F and

neB
&)

> an= Y, a, <oo. Therefore > a, is (*)-Z-convergent. O
nEBNA neBNA n=1

In the light of Proposition 13 what we proved in Theorem 12 is that under the
assumption p = ¢ there is a rapid filter. However this is a known fact (see e.g.
[11]). Theorem 10 can be read as follows — there are no analytic rapid P-ideals.
On the other hand, by the result of Judah and Shelah [13], there is a model of
ZFC in which there are no rapid filters. Therefore we have the following.

Corollary 14. [t is independent of ZFC' that there exists an ideal T on N such

o0
that the (*)-I-convergence of (ay) to zero implies the (*)-I-convergence of > an
n=1
for every sequence (a,) of real numbers. In particular, it is independent of ZFC
that there exists a P-ideal on N such that the T-convergence of (ay) to zero
o0

implies the T-convergence of > a,, for every sequence (ay) of real numbers.
n=1
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