
ON THE LACZKOVICH-KOMJÁTH PROPERTY OF SIGMA-IDEALS

MAREK BALCERZAK AND SZYMON G LA̧B

Abstract. Komjáth in 1984 proved that, for each sequence (An) of analytic subsets of

a Polish apace X, if lim supn∈H An is uncountable for every H ∈ [N]ω then
T
n∈GAn

is uncountable for some G ∈ [N]ω. This fact, by our definition, means that the σ-

ideal [X]≤ω has property (LK). We prove that every σ-ideal generated by X/E has

property (LK), for an equivalence relation E ⊂ X2 of type Fσ with uncountably many

equivalence classes. We also show the parametric version of this result. Finally, the

invariance of property (LK) with respect to various operations is studied.

1. Introduction

We use standard set theoretical notation (see [Sr] or [Ke]). As usual, N = {0, 1, 2, . . . }.
Let (An) be a sequence of subsets of the real line (or a Polish space). We are interested
in the following question. If the set lim supn∈H An is large, in a given sense, for every
H ∈ [N]ω, is it true that at least one among the sets

⋂
n∈H An, n ∈ H, is large in the

same sense? Observe that

lim sup
n∈H

An =
⋂
n∈H

⋃
k∈H
k≥n

Ak =
⋃

G∈[H]ω

⋂
k∈G

Ak,

so, we ask how strongly the largeness of all unions
⋃
G∈[H]ω

⋂
k∈GAk, H ∈ [N]ω, has

the influence on the largeness of the summands
⋂
k∈H Ak, H ∈ [N]ω. These and related

questions were discussed by Laczkovich [L] and Halmos [H]. Laczkovich in [L] proved
that, for every sequence (An) of Borel subsets of a Polish space, if lim supn∈H An is
uncountable for each H ∈ [N]ω then

⋂
n∈GAn is uncountable for some G ∈ [N]ω. This

result was then generalized by Komjáth [K, Thm 1] to the case when the sets An

are analytic. Note that an uncountable analytic subset of a Polish space contains a
homeomorphic copy of the Cantor set [Sr, Thm 4.3.5], so it is of cardinality of the
continuum. Komjáth also proved that the result of Laczkovich cannot be generalized
within ZFC to the case of coanalytic sets. Namely, if V = L, there is a sequence (An)
of coanalytic sets such that | lim supn∈H An| > ω and |

⋂
n∈H An| ≤ ω for all H ∈ [N]ω;

see [K, Thm. 4].
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From now on, let X be an uncountable Polish space. In connection with the above
quoted theorem of Komjáth about analytic sets, we introduce the following property of
an ideal J of subsets of X. We say that J has property (LK) (the Laczkovich-Komjáth
property) whenever for every sequence (An) of analytic subsets ofX, if lim supn∈H An /∈ J

for each H ∈ [N]ω then
⋂
n∈GAn /∈ J for some G ∈ [N]ω. So, the Komjáth theorem states

that the ideal [X]≤ω has property (LK). While studying ideals with property (LK) we
may restrict our considerations only to those ones with bases consisting of analytic sets.
Recall that a family F is a base of an ideal J ⊂ P(X) if F ⊂ J and each set A ∈ J is
contained in a set B ∈ F. Namely, observe that J has property (LK) if and only if the
ideal

J|ΣΣΣ1
1

= {A ⊂ X : (∃B ∈ J ∩ΣΣΣ1
1(X)) A ⊂ B}

has property (LK), and J∩ΣΣΣ1
1(X) is a base of J|ΣΣΣ1

1
consisting of analytic sets. If a base

of an ideal J consists of analytic sets, we say that J has an analytic base.
The next observation is due to T. Banakh (oral communication).

Proposition 1. An ideal J with an analytic base and with property (LK) is σ-additive.

Proof. Suppose that J is not σ-additive. Let (An) be an increasing sequence of analytic
sets from J whose union is not in J. Then for each H ∈ [N]ω we have lim supn∈H An =⋃
n∈NAn /∈ J but

⋂
n∈H = Amin(H) ∈ J.

If we do not assume that J has analytic base, the assertion of Proposition 1 can be
false. Namely, consider a partition F = {Bn : n ∈ N} of the real line into pairwise
disjoint Bernstein sets. Let J stand for the ideal generated by F ∪ [R]≤ω. Then J is not
σ-additive but it has property (LK) since J|ΣΣΣ1

1
= [R]≤ω.

Example 2. Consider X = {0, 1}N and the sequence (An) of clopen subsets of X, given
by

An = {x ∈ X : x(n) = 1}, n ∈ N.

Let λ stand for the standard (product) probability measure on X. The sets An, n ∈ N,
are independent with λ(An) = 1/2. We then have λ(

⋂
n∈H An) = 0 for each H ∈ [N]ω

and, by the Borel-Cantelli lemma, λ(lim supn∈H An) = 1 for each H ∈ [N]ω. Hence
the σ-ideal of sets of measure zero does not have property (LK). This example can be
easily modified to the case of X = [0, 1] with Lebesgue measure – the respective versions
were given by Laczkovich [L, proof of 2] and Halmos [H]. Also note that the sets
lim supn∈H An, H ∈ [N]ω, are dense of type Gδ (thus residual) while the sets

⋂
n∈H An,

H ∈ [N]ω, are closed nowhere dense. Hence it follows that the σ-ideal of meager sets,
and the σ-ideal generated by closed sets of measure zero, do not have property (LK).

Denote by σ(ΣΣΣ1
1) the σ-algebra generated by all analytic subsets of X. Recall that

a Boolean algebra A is said to be atomic if for each positive element x ∈ A, there is
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an atom a ∈ A such that a ≤ x. If J ⊂ P(X) is an ideal, the symbol σ(ΣΣΣ1
1)/J will

abbreviate the quotient Boolean algebra σ(ΣΣΣ1
1)/(J ∩ σ(ΣΣΣ1

1)).

Proposition 3. Let J be a σ-ideal, with analytic base, such that σ(ΣΣΣ1
1)/J is an atomic

Boolean algebra. Then J has property (LK).

Proof. For A ∈ σ(ΣΣΣ1
1) let [A] denote the respective element of σ(ΣΣΣ1

1)/J. Let (An) be a
sequence of analytic sets. Since J is a σ-ideal, we have [lim sup

n∈N
An] =

∧
k

∨
n≥k [An] 6= 0.

Since σ(ΣΣΣ1
1)/J is atomic, pick an atom a ≤ [lim sup

n∈N
An]. It follows that a ≤

∨
n≥k [An]

for every k ∈ N. For every k ∈ N pick nk ≥ k such that a ∧ [Ank ] 6= 0, thus a = [Ank ].
Consequently, the set H = {nk ∈ N : a = [Ank ]} is infinite, and a =

∧
n∈H [An]. Hence⋂

n∈H An /∈ J.

To show a simple application of Proposition 3, consider an analytic set A ⊂ X, A 6= X,
and the ideal P(A). Then P(A) has property (LK) since the atoms of σ(ΣΣΣ1

1)/P(A) are
of the form [{x}], x ∈ X \A.

2. A generalization of the Komjáth theorem

If A ⊂ X × Y and x ∈ X, we denote by A(x) = {y ∈ Y : (x, y) ∈ A}; this is the
section of A generated by x.

Assume that E ⊂ X2 is an equivalence relation such that the family X/E of all
equivalence classes E(x) = {y ∈ X : (x, y) ∈ E}, x ∈ X, is uncountable. Next, consider
the σ-ideal JE generated by X/E, that is, A ∈ JE if and only if A ⊂

⋃
n∈NE(xn) for a

sequence (xn) ∈ XN. A set B is called a partial transversal for E if |B ∩ E(x)| ≤ 1, for
each x ∈ X. Note that, if a partial transversal B is uncountable then B /∈ JE .

We are going to prove the following generalization of the Komjáth theorem.

Theorem 4. Let E ⊂ X2 be an equivalence relation of type Fσ with |X/E| > ω. Then
for every sequence (A(n)) of analytic subsets of X, such that lim supn∈H A(n) /∈ JE for
all H ∈ [N]ω, there are sets G ∈ [N]ω and P ⊂

⋂
n∈GA

(n) such that P is a partial
transversal for E, homeomorphic with {0, 1}N. In particular, the σ-ideal JE possesses
property (LK).

The proof of Theorem 4 combines original ideas from the paper by Komjáth [K] with
a demonstration of the fact that every relation E satisfying assumptions of Theorem 3
admits a partial transversal homeomorphic with {0, 1}N (cf. [Sr, 2.6.7, 2.6.8]; this fact
remains true if E is ΠΠΠ1

1, by the Silver theorem [Ke, 35.20]).
The following three lemmas are counterparts of the respective lemmas in [K]. Before

we will formulate them, we give some auxiliary terminology modified respectively in
comparision with [K].

Fix a proper σ-ideal J ⊂ P(X) containing all singletons, and a sequence (A(n)) of
analytic subsets of X such that lim supn∈H A(n) /∈ J for all H ∈ [N]ω. Next, fix H ∈ [N]ω.
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We say that a set Y ⊂ X is good with respect to H if Y ∩ lim supn∈GA(n) /∈ J for all
G ∈ [H]ω. Observe that, if Y is good with respect to H, and Z ⊂ Y , Z ∈ J, then
Y \ Z is good with respect to H. In particular, if Y is closed and good with respect to
H, then the perfect kernel of Y (cf. [Sr, 2.6.2]) is good with respect to H; we will use
this fact several times. For H1,H2 ∈ [N]ω we say that H1 is almost contained in H2 if
|H1 \H2| < ω.

Lemma 5. If a set Y =
⋃
i∈N Yi is good with respect to H ∈ [N]ω then there are i ∈ N

and H ′ ∈ [H]ω such that Yi is good with respect to H ′.

The proof is analogous to that given in [K, Lemma 1].

Lemma 6. Let F, P,A ⊂ X where F and P are closed, F ∈ J and P ∩ A is good
with respect to a given H ∈ [N]ω. Then there are x ∈ P \ F and H ′ ∈ [H]ω such that
(P \ F ) ∩A ∩ U is good with respect to H ′, for each neighbourhood U of x.

Proof. (cf. [K, Lemma 2]) Since F ∈ J, the set (P \ F ) ∩ A is good with respect to H.
The set P \F is of type Fσ, so we can express it as

⋃
i∈N Pi where every Pi is closed and

diamPi < 1. By Lemma 5 there are i0 ∈ N and H0 ∈ [H]ω such that A ∩ Pi0 is good
with respect to H0. Let Pi0 =

⋃
i∈N Pi0i where every Pi0i is closed and diamPi0i < 1/2.

By Lemma 5 there are i1 ∈ N and H1 ∈ [H0]ω such that A ∩ Pi0i1 is good with respect
to H1. We continue this process and find a sequence P \F ⊃ Pi0 ⊃ Pi0i1 ⊃ . . . of closed
sets with diameters tending to zero, and a sequence H ⊃ H0 ⊃ H1 ⊃ . . . such that
Hn ∈ [H]ω and A ∩ Pi0...in is good for Hn, for every n. Pick a point x ∈

⋂
n∈N Pi0...in

and H ′ ∈ [H]ω almost contained in every Hn. Then A ∩ Pi0...in is good with respect to
H ′. For each neighbourhood U of x, pick Pi0...in ⊂ U and note that (P \ F ) ∩ A ∩ U is
good with respect to H ′.

Lemma 7. Let E ⊂ X2 be as in Theorem 4, let E =
⋃
k∈NEk where Ek are closed sets,

and let J = JE. Fix H ∈ [N]ω, ε > 0, n ∈ N and P0, P1, A0, A1 ⊂ X where P0, P1 are
closed. If Pi ∩Ai is good with respect to H, there are H ′ ∈ [H]ω and disjoint closed sets
P0 ⊂ P0, P1 ⊂ P1 such that diamP0 < ε, diamP1 < ε, (P0 ×P1)∩En = ∅ and P0 ∩A0,
P1 ∩A1 are good with respect to H ′.

Proof. Applying Lemma 6 to F = ∅ we obtain a point x0 ∈ P0 and a set H0 ∈ [H]ω

such that P0 ∩ A0 ∩ U is good with respect to H0, for each neighbourhood U of x0.
Since En(x0) ∈ JE , applying Lemma 6 to F = En(x0) we obtain x1 ∈ P1 \ En(x0)
and H1 ∈ [H0]ω such that (P1 \ En(x0)) ∩ A1 ∩ U is good with respect to H1, for
each neighbourhood U of x1. Since (x0, x1) /∈ En, by the closedness of En we can find
open neighbourhoods U0 and U1 of x0 and x1 (respectively) such that clU0 ∩ clU1 = ∅,
(clU0× clU1)∩En = ∅ and diamU0 < ε, diamU1 < ε. Put H ′ = H1 and Pi = Pi ∩ clUi
for i = 0, 1.
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Proof of Theorem 4. We will follow the scheme used in the the proof of the Komjáth
theorem [K]. We may suppose that X is perfect (replacing it by its perfect kernel) and
that diamX < 1. Assume that E =

⋃
n∈NEn where sets (En) is an increasing sequence

of closed sets. Fix a sequence (A(j)) of analytic subsets of X such that lim supj∈H A(j) /∈
JE for every H ∈ [N]ω. Express each set A(j) as the result of the Souslin operation (cf.
[Ke, 25.7]), that is

A(j) =
⋃
z∈NN

⋂
n∈N

F
(j)
z|n

where sets F (j)
z|n are closed, diamF

(j)
z|n < 1/(n+1) and for any z ∈ NN, m,n ∈ N, if n > m

then F
(j)
z|n ⊂ F

(j)
z|m. For t ∈ Nn we put

A
(j)
t =

⋃
z∈NN,z|n=t

⋂
k∈N

F
(j)
z|k .

We may assume that A(0) = X. By recursion, for each n ∈ N we define a number jn ∈ N,
perfect sets Ps (with s ∈ {0, 1}n), finite sequences t(k, s) ∈ Nn (with k ≤ n, s ∈ {0, 1}n)
and a set Hn ∈ [N]ω with the following properties:

(W1) jn > jn−1,Hn ∈ [Hn−1]ω, jn ∈ Hn−1;
(W2) diamPs <

1
n+1 , Psˆ0 ∪ Psˆ1 ⊂ Ps, Psˆ0 ∩ Psˆ1 = ∅;

(W3) if s, s′ ∈ {0, 1}n+1 and s 6= s′ then (Ps × Ps′) ∩ En = ∅;
(W4) Ps ∩A(j0)

t(0,s) ∩ . . . ∩A
(jn)
t(n,s) is good with respect to Hn;

(W5) Ps ⊂ F (j0)
t(0,s) ∩ . . . ∩ F

(jn)
t(n,s);

(W6) t(k, s) ⊂ t(k, ŝ 0) ∩ t(k, ŝ 1).

Having these objects defined, by (W2) we infer that P =
⋂
n∈N

⋃
s∈{0,1}n Ps is a

set homeomorphic with {0, 1}N (cf. [Sr, 2.6]). For z ∈ {0, 1}N and k ∈ N denote
z|k = (z(0), . . . , z(k − 1)). Let x, y ∈ P , x 6= y, and consider z, w ∈ {0, 1}N such that
x ∈

⋂
n∈N Pz|n, y ∈

⋂
n∈N Pw|n. Pick the minimal k ∈ N with z(k) 6= w(k). Then by (W3)

we have (Pz|(i+1)×Pw|(i+1))∩Ei = ∅ for all i ≥ k, and also (Pz|(k+1)×Pw|(k+1))∩Ei = ∅
for all i < k since E0 ⊂ E1 ⊂ . . . ⊂ Ek. So, (x, y) /∈ E and consequently, P is a partial
transversal for E. Let G = {j0, j1, . . . , jn, . . . }. Then by (W5) and (W6), we have that
P ⊂

⋂
n∈NA

(jn) =
⋂
j∈GA

(j) which yields the assertion.
The rest of proof consists of a construction of objects fulfilling (W1)–(W6) – the idea

is quite similar to that given in [K]. However, some details are more involved and we give
them for the reader’s convenience. First put j0 = 0, P∅ = X, H0 = N and t(0, ∅) = ∅.
Next assume that, for a fixed n ∈ N, we have chosen jk (for k ≤ n), Ps (for s ∈ {0, 1}k,
k ≤ n), t(k, s) (for k ≤ l ≤ n, s ∈ {0, 1}l) and Hk (for k ≤ n).

First, we shall prove that there are a number j ∈ Hn such that j > jn and a set
H ′n ∈ [Hn]ω fulfilling the condition

(∀s ∈ {0, 1}n) Ps ∩A(j0)
t(0,s) ∩ . . . ∩A

(jn)
t(n,s) ∩A

(j) is good wrtH ′n.(W7)
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If it is not so, for each j ∈ Hn, j > jn, and for each H ∈ [Hn]ω there are s ∈ {0, 1}n and
G ∈ [H]ω such that

Ps ∩A(j0)
t(0,s) ∩ . . . ∩A

(jn)
t(n,s) ∩A

(j) ∩ lim sup
r∈G

A(r) ∈ JE .

Proceeding inductively, we find numbers k0 < k1 < . . . and sets G0 ⊃ G1 ⊃ . . . with
G0 = Hn, such that for each m ∈ N we have km ∈ Gm ∈ [N]ω and we can fix an
sm ∈ {0, 1}n with

Psm ∩A
(j0)
t(0,sm) ∩ . . . ∩A

(jn)
t(n,sm) ∩A

(km) ∩ lim sup
r∈Gm+1

A(r) ∈ JE .

Then pick an s ∈ {0, 1}n such that Γ = {km : sm = s} is infinite. Observe that Γ is
almost contained in every Gm. Hence

Ps ∩A(j0)
t(0,s) ∩ . . . ∩A

(jn)
t(n,s) ∩ (

⋃
m∈Γ

A(m)) ∩ lim sup
r∈Γ

A(r) ∈ JE .

Since lim supr∈ΓA
(r) ⊂

⋃
m∈ΓA

(m), the union in the above condition can be deleted,
and so, we obtain a contradiction with (W4).

Consequently, the respective j ∈ Hn, j > jn, and H ′n ∈ [Hn]ω fulfilling (W7) do exist,
and we put jn+1 = j. For each s ∈ {0, 1}n, write in short

A∗s = A
(j0)
t(0,s) ∩ . . . ∩A

(jn)
t(n,s) ∩A

(jn+1).

Now, we will show how to construct sets Ps with s ∈ {0, 1}n+1. Because of condition
(W3), the construction is divided into several steps using Lemma 7. List all distinct
pairs in {0, 1}n × {0, 1}n as (si, s′i) (i = 1, . . . , pn). We decrease sets Ps, s ∈ {0, 1}n,
in pn steps as follows. Put H(0)

n = H ′n and P
(0)
s = Ps for s ∈ {0, 1}n. In the ith step

(i = 1, . . . , pn) applying Lemma 7 (and (W7) if i = 1), we find H
(i)
n ∈ [H(i−1)

n ]ω and
closed sets P (i)

s1 ⊂ P
(i−1)
s1 , P (i)

s′1
⊂ P (i−1)

s′1
such that (P (i)

s1 × P
(i)
s′1

) ∩En = ∅ and P (i)
s1 ∩A∗s1 ,

P
(i)
s′1
∩ A∗s′1 are good wrt H(i)

n ; we also put P (i)
s = P

(i−1)
s for all s ∈ {0, 1}n \ {si, s′i}. If

this process is finshed, we define H∗n = H
(pn)
n and P ∗s = P

(pn)
s for all s ∈ {0, 1}n.

Next by Lemma 7, for every s ∈ {0, 1}n we find disjoint closed sets Psˆ0, Psˆ1 ⊂ P ∗s
such that diamPsˆ0 < 1/(n+ 2), diamPsˆ1 < 1/(n+ 2), (Psˆ0 × Psˆ1) ∩En = ∅, and we
find H

′′
n ∈ [H∗n]ω such that for all s ∈ {0, 1}n and i ∈ {0, 1}

Psˆi ∩A∗s = Psˆi ∩A
(j0)
t(0,s) ∩ . . . ∩A

(jn)
t(n,s) ∩A

(jn+1) is good wrtH
′′
n .(W8)

Fix, s ∈ {0, 1}n, i ∈ {0, 1}. Since the set in (W8) is contained in the union⋃
z0∈Nn+1,z0⊃t(0,s)

. . .
⋃

zn∈Nn+1,zn⊃t(n,s)

⋃
zn+1∈Nn+1

Psˆi ∩A(j0)
z0 ∩ . . . ∩A

(jn+1)
zn+1

,

by Lemma 5, one of the components of this union is good. Moreover, if we use 2n+1 times
Lemma 5, we obtain Hn ∈ [H

′′
n ]ω witnessing this fact simultaneously for all s ∈ {0, 1}n
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and i ∈ {0, 1}. Choose t(0, ŝ i), . . . , t(n + 1, ŝ i) as the sequence corresponding to ŝ i.
Observe that the sets

Qsˆi = Psˆi ∩ F
(j0)
t(0,sˆi) ∩ . . . ∩ F

(jn+1)
t(n+1,sˆi)

are good for Hn since Qsˆi and Psˆi have the same intersections with A
(j0)
t(0,sˆi) ∩ . . . ∩

A
(jn+1)
t(n+1,sˆi). Finally, define Psˆi as the perfect kernel of Qsˆi and let Hn+1 = Hn.

If E is the equality relation, Theorem 4 yields exactly the Komjáth theorem. If
An = A for every n ∈ N, we obtain the following corollary which also can be derived
from a deep result of Silver (cf. [Ke, 35.20]).

Corollary 8. If E ⊂ X2 is an equivalence relation of type Fσ with |X/E| > ω, and
A /∈ JE is an analytic set, then there is a set P ⊂ A homeomorphic with {0, 1}N and
being a partial transveral for E.

3. Parametric Laczkovich-Komjáth property

Several combinatorial results have their parametric versions which in fact generalize
them in a nice way, see e.g. [Mi], [Pa]. A parametric version of the Komjáth theorem
was proved in [G]. Here, by the use of similar methods, we shall prove a parametric
version of Theorem 3. Moreover, we give a condition which guarantees that a σ-ideal J

with property (LK) has parametric property (LK).
By the Mazurkiewicz-Sierpiński theorem [Ke, 29.19], if X,Y are Polish spaces then

for each analytic set A ⊂ X × Y , the set {x ∈ X : |A(x)| > ω} is also analytic. We say
that an ideal J ⊂ P(Y ) has the Mazurkiewicz-Sierpiński property if for any Polish space
X and analytic set A ⊂ X × Y , the set {x ∈ X : A(x) /∈ J} is analytic. This property
holds true for, besides the ideal of countable sets, the ideal of meager sets in Y [Ke,
29.22] and the ideal of Lebesgue null sets in R [Ke, 29.26].

We say that an ideal J ⊂ P(Y ) has parametric property (LK), whenever for every
uncountable Polish space X and every sequence (An) of analytic subsets of X × Y , if
lim supn∈H An(x) /∈ J for all x ∈ X and H ∈ [N]ω then there are a perfect set P ⊂ X and
G ∈ [N]ω such that

⋂
j∈GAj(x) /∈ J for each x ∈ P . Since X contains a homeomorphic

copy of the Cantor space, we may assume thatX = {0, 1}N. Clearly, parametric property
(LK) is stronger than property (LK). In [G], it was proved that the ideal [Y ]≤ω of all
countable subsets of Y has parametric property (LK). The same scheme of a proof will
work for Proposition 9.

Recall some definitions. For any α ∈ [N]ω and H ∈ [N]<ω with max(α) < min(H),
the set of the form [α,H] = {G ∈ [N]<ω : α ⊂ G ⊂ α ∪ H} is said to be an Ellentuck
neighbourhood, and the topology generated by all Ellentuck neighbourhoods is called
the Ellentuck topology on [N]ω. According to [Pa], a set A ⊂ {0, 1}ω × [N]ω is called
perfectly Ramsey if for every perfect set P ⊂ {0, 1}N and every Ellentuck neighbourhood
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[α,H] there are a perfect set Q ⊂ P and G ∈ [H]ω such that either Q × [α,G] ⊂ A or
(Q× [α,G])∩A = ∅. (All the considered perfect sets are nonempty.) If we identify sets
H ∈ [N]ω with their indicators in {0, 1}N, the space [N]ω is Polish. From [Pa, Thm 1.1]
it follows that every analytic set A ⊂ {0, 1}N × [N]ω is perfectly Ramsey.

Proposition 9. Let Y be an uncountable Polish space and let J ⊂ P(Y ) be a σ-ideal with
property (LK) and with the Mazurkiewicz-Sierpiński property. Then J has parametric
property (LK).

Proof. Put X = {0, 1}N. Let Aj ⊂ X × Y , j ∈ N, be analytic sets such that
lim supj∈H Aj(x) /∈ J for x ∈ X and H ∈ [N]ω. Define

A = {(x,H) ∈ X × [N]ω :
⋂
j∈H

Aj(x) /∈ J}.

Consider

B ={(x,H, y) ∈ X × [N]ω × Y : (x, y) ∈
⋂
j∈H

Aj}

={(x,H, y) ∈ X × [N]ω × Y : ∀j ∈ N (j /∈ H or (x, y) ∈ Aj)}

and observe that B is analytic. Hence the set

A = {(x,H) ∈ X × [N]ω : B(x,H) /∈ J}

is analytic, since J has the Mazurkiewicz-Sierpiński property. Now, by the Pawlikowski
theorem, A is perfectly Ramsey. Then pick a perfect set P ⊂ X and H ∈ [N]ω such
that either P × [∅,H] ⊂ A or (P × [∅,H]) ∩ A = ∅. The latter case is impossible since,
by property (LK) of J, for each x ∈ P there exists G ∈ [H]ω such that

⋂
j∈GAj(x) /∈ J.

The former case yields
⋂
j∈H Aj(x) /∈ J for all x ∈ P .

By K(X) we denote the hyperspace of all nonempty compact subsets of X, equipped
with the Vietoris topology (or, equivalently with the Hausdorff metric); cf. [Ke, 4.7]
and [Sr, pp. 66–69]. In the sequel, a perfect set which is a partial transversal for an
equivalence relation E will be called a perfect partial transversal for E (in short, E-ppt).

Lemma 10. Let Y be an uncountable Polish space. If E ⊂ Y 2 is an equivalence relation
of type Fσ with |Y/E| > ω then the family of all sets L ∈ K(Y ) containing a perfect
partial transversal for E is analytic.

Proof. Let E =
⋃
n∈NEn where (En) is an increasing sequence of closed sets. Fix a

countable base {Ui : i ∈ N} of the topology in Y . For L ∈ K(Y ) we have the following
equivalence

L contains an E-ppt ⇐⇒ (∃K ∈ K(L))(∀i, j, n ∈ N)(Ui ∩K 6= ∅ 6= Uj ∩K)⇒(∗)

(∃k, l ∈ N)(clUk ⊂ Ui, clUl ⊂ Uj , clUk ∩ clUl = ∅, diamUk <
1

n+ 1
, diamUl <

1
n+ 1

,

Uk ∩K 6= ∅ 6= Ul ∩K, (Uk × Ul) ∩ En = ∅).



ON THE LACZKOVICH-KOMJÁTH PROPERTY OF SIGMA-IDEALS 9

Hence, in a standard way (cf. [Ke, 4.29], [Sr, 2.4.11]) we show that the family of all sets
L ∈ K(Y ) containing an E-ppt is analytic. Thus to finish the proof it suffices to show
that (∗) does hold.

If L ∈ K(Y ) contains an E-ppt K, we easily conclude that K satisfies the right hand
side of the equivalence (∗). Conversely, if K ∈ K(L) satisfies the right hand side of the
equivalence (∗), we can define by recursion a family {Vs : s ∈ {0, 1}<N} ⊂ {Ui : i ∈ N}
such that for each s ∈ {0, 1}<N the following conditions hold:

(i) Vs ∩K 6= ∅;
(ii) clVsˆ0 ∪ clVsˆ1 ⊂ Vs, clVsˆ0 ∩ clVsˆ1 = ∅;
(iii) diamVs < 1/(|s|+ 1);

and additionally,

(iv) (Vs × Vs′) ∩ En = ∅ for all n ∈ N and s, s′ ∈ {0, 1}n+1, s 6= s′.

The construction is similar to that given in the proof of Theorem 4 (cf. conditions
(W1)–(W3)). Then

⋂
n∈N

⋃
s∈{0,1}n(K ∩ clVs) is an E-ppt contained in L.

Theorem 11. Let E ⊂ X2 be an equivalence relation of type Fσ with |X/E| > ω. Then
the σ-ideal JE has the Mazurkiewicz-Sierpiński property.

Proof. Set N = N
N. For an analytic set B ⊂ Y pick a closed set F ⊂ Y × N such that

prY (F ) = B where prY stands for the projection from Y ×N to Y . Observe that

B /∈ JE ⇐⇒ (∃K ∈ K(Y ×N))(K ⊂ F and prY (K) contains an E-ppt).(∗∗)

Indeed, to show “⇒” assume that B /∈ JE . By Corollary 8, B contains an E-ppt P .
Note that P = prY ((P ×N) ∩ F ). By [Ke, 29.20] there is a set K ⊂ (P ×N) ∩ F such
that the both K and prY (K) are homeomorphic with {0, 1}N. Since prY (K) ⊂ P so
prY (K) is an E-ppt with K ⊂ F . Implication“⇐” is obvious.

Now, let A ⊂ X×Y be an analytic set and pick a closed set F ⊂ X×Y ×N such that
prX×Y (F ) = A. Then A(x) = prY (F (x)) and F (x) ⊂ Y × N is closed for each x ∈ X.
By (∗∗), for each x ∈ X we have

A(x) /∈ JE ⇐⇒ (∃K ∈ K(Y ×N))(K ⊂ F (x) and prY (K) contains an E-ppt).(∗∗′)

Observe that the set {(x,K) ∈ X ×K(Y ×N) : K ⊂ F (x)} is closed and note that the
mapping K 7→ prY (K) from K(Y ×N) to K(Y ) is continuous [Ke, 4.29(vi)]. Hence by
Lemma 10 and (∗∗′) the assertion follows.

From Proposition 9, by Theorems 4 and 11, we deduce immediately the following fact.

Theorem 12. Let Y be an uncountable Polish space. If E ⊂ Y 2 is an equivalence
relation of type Fσ with |Y/E| > ω then JE has parametric property (LK).
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4. Some results about invariance

In this section we study how property (LK) is preserved by various operations.
It is well known that for any two uncountable Polish spaces there is a Borel iso-

morphism between them; see [Ke, 15.6] and [Sr, 3.3.13]. Observe that if X and Y are
uncountable Polish spaces and a σ-ideal J ⊂ P(X) has property (LK) then, for every
Borel isomorphism ϕ : X → Y , the σ-ideal {ϕ(A) : A ∈ J} ⊂ P(Y ) has property (LK).
From Example 2 we know that the σ-ideals of meager subsets of {0, 1}N and of measure
zero subsets of {0, 1}N do not have property (LK). These facts can be generalized. Since
between any two perfect Polish spaces there is a Borel isomorphism preserving the Baire
category (see e.g. [CKW, 3.15]), the σ-ideal of meager subsets of a perfect Polish space
does not have property (LK). Similarly, using a special Borel isomorphism (cf. [Ke,
17.41]) we infer that the σ-ideal of null sets with respect to a finite continuous Borel
measure on an uncountable Polish space does not have property (LK).

For uncountable Polish spaces X,Y and for σ-ideals I ⊂ P(X), J ⊂ P(Y ), put

I⊗ J = {A ⊂ X × Y : {x ∈ X : A(x) /∈ J} ∈ I}.

Then I⊗ J forms a σ-ideal.

Example 13. Let E ⊂ X2 be an equivalence relation of type Fσ with |X/E| > ω.
Consider {∅}, the trivial σ-ideal of subsets of Y . We will show that JE ⊗ {∅} has
property (LK). To this aim define E ⊂ (X × Y )2 by

(x, y)E(x′, y′) ⇐⇒ xEx′, for (x, y), (x′, y′) ∈ X × Y.

Clearly, E is of type Fσ. Also E(x, y) = E(x) × Y for each (x, y) ∈ X × Y . It is easy
to check that JE = JE ⊗ {∅}. Hence JE ⊗ {∅} has property (LK) by Theorem 4. In
particular, [X]≤ω ⊗ {∅} has property (LK).

The case of the σ-ideal {∅} ⊗ [X]≤ω is more interesting. The problem whether this
σ-ideal has property (LK) remains open. We have only a partial result which can shed
some light on the problem.

Let I, J be σ-ideals such that I ⊂ J ⊂ P(X). We say that the pair (I, J) has
property (LK) whenever for every sequence (An) of analytic subsets of X, condition
lim supn∈H An /∈ J for every H ∈ [N]ω implies

⋂
n∈GAn /∈ I for some G ∈ [N]ω. Clearly,

if J has property (LK) then (I, J) has property (LK), and J has property (LK) iff (J, J)
has property (LK).

Proposition 14. For uncountable Polish spaces Xand Y , consider the σ-ideals [X]≤ω,
{∅} ⊂ P(X) and a fixed σ-ideal J ⊂ P(Y )with property (LK). Then {∅}⊗J has property
(LK) if and only if ({∅} ⊗ J, [X]≤ω ⊗ J) has property (LK).

Proof. ”⇒” Let (An) be a sequence of analytic subsets of X × Y such that
lim supn∈H An /∈ [X]≤ω ⊗ J for each H ∈ [N]ω. Then also lim supn∈H An /∈ {∅} ⊗ J for
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each H ∈ [N]ω. By the assumption, {∅} ⊗ J has property (LK). So,
⋂
n∈GAn /∈ {∅} ⊗ J

for some G ∈ [N]ω.
”⇐” Suppose that {∅}⊗J does not have property (LK). Thus there is a sequence (An)

of analytic subsets of X×Y such that for all H ∈ [N]ω we have lim supn∈H An /∈ {∅}⊗J

and

(∀G ∈ [H]ω)
⋂
n∈G

An ∈ {∅} ⊗ J.(4)

Define

BH = {x ∈ X : lim sup
n∈H

An(x) /∈ J}, H ∈ [N]ω.

Consider two cases:
10 |BH | > ω for all H ∈ [N]ω. Hence lim supn∈H An /∈ [X]≤ω⊗J for all H ∈ [N]ω, and

by the assumption
⋂
n∈GAn /∈ {∅} ⊗ J for some G ∈ [N]ω, a contradiction with (4).

20 |BH0 | ≤ ω for some H0 ∈ [N]ω. Firstly note that if H,H ′ ∈ [N]ω and H is
almost contained in H ′ then BH ⊂ BH′ . Secondly note that it is not possible to have
BG = BH0 for all G ∈ [H0]ω since in this case, for each x ∈ BH0 (by property (LK)
for J) we would pick Gx ∈ [H0]ω such that

⋂
n∈Gx An(x) /∈ J, a contradiction with (4).

Hence there exists a set G ∈ [H0]ω such that BG 6= BH0 . Proceeding inductively, we
define a sequence (Hα)α<ω1 such that Hα+1 ∈ [Hα]ω, BHα+1 6= BHα (α < ω1), and for
a limit ordinal α < ω1, we pick Hα ∈ [H0]ω almost contained in every Hβ, β < α. So,
(BHα)α<ω1 is a strictly descending sequence of countable sets, a contradiction.

Another interesting question concerns the intersection of σ-ideals: What is the (possi-
bly large) cardinality of a family of σ-ideals with property (LK) such that the intersection
of the family has also property (LK)?

Let r0 stand for the ideal of nowhere dense sets in the Ellentuck topology on [N]ω.
Put

cov(r0) = min{|D| : D ⊂ r0 or
⋃

D = [N]ω}.

Plewik [Pl] proved that cov(r0) = h where h is the cardinal introduced by Balcar, Pelant
and Simon [BPS]. It is known that ω1 ≤ h ≤ 2ω, and either or both inequalities can be
strict in some models of ZFC (see [V]). We offer the following result connected with the
above-mentioned question.

Proposition 15. Let F ⊂ P(X) be a family of size |F| < h, of σ-ideals with property
(LK) on an uncountable Polish space X. Then

⋂
F has property (LK).

Proof. Let (An) be a sequence of analytic subsets of X such that lim supn∈H An /∈
⋂

F

for each H ∈ [N]ω. Put

BJ = {H ∈ [N]ω : lim sup
n∈H

An /∈ J} for J ∈ F.
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We have [N]ω =
⋃

J∈F BJ. Since |F| < h = cov(r0), pick a σ-ideal J ∈ F such that BJ

is dense in some Ellentuck neighbourhood [α,H] with α ∈ [N]<ω, H ∈ [N]ω, max(α) <
min(H). Hence for every G ∈ [H]ω we can find G′ ∈ BJ ∩ [α,G]. Consequently,
lim supn∈G′ An /∈ J and since G′ ⊂ α∪G, we have lim supn∈GAn /∈ J. By property (LK)
of J, there is G0 ∈ [H]ω such that

⋂
n∈G0

An /∈ J. Thus
⋂
n∈G0

An /∈
⋂

F.

The following example shows a family F, of size of the continuum, of σ-ideals with
property (LK) such that

⋂
F has property (LK) and

⋂
F is different from the σ-ideal of

countable sets.

Example 16. For a fixed z ∈ [0, 1], let J(z) stand for the σ-ideal of subsets of [0, 1]2

generated by the family

{{0} × [0, 1]} ∪ {{z} × [0, 1]} ∪ ([0, 1]2)≤ω.

Then J(z) = JEz where Ez ⊂ ([0, 1]2)2 is the equivalence relation given by

(x, y)Ez(x′, y′) ⇐⇒ ((x = x′) and (x = 0 or x = z or y = y′)).

Since Ez is closed and |[0, 1]2/Ez| = 2ω, the σ-ideal J(z) has property (LK) by Theorem
4. Let F = {J(z) : z ∈ [0, 1]}. Then |F| = 2ω and

⋂
F = J(0), so

⋂
F has property (LK).
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