QUALITATIVE PROPERTIES OF IDEAL CONVERGENT SUBSEQUENCES
AND REARRANGEMENTS

MAREK BALCERZAK, SZYMON GLAB, AND ARTUR WACHOWICZ

ABSTRACT. We investigate the Baire category of Z-convergent subsequences and rearrangements of a
divergent sequence s = (s,) of reals, if Z is an ideal on N having the Baire property. We also discuss
the measure of the set of Z-convergent subsequences for some classes of ideals on N. Our results
generalize theorems due to H. Miller and C. Orhan (2001).

1. INTRODUCTION

Denote N := {1,2,...}. Let s = (s,) € RY be a given sequence. Firstly, we are interested in
subsequences of s. Let T' C {0, I}N denote the set of all sequences with infinite number of ones. For
x = (x,) € T we generate a subsequence sx of s in such a way that, if ¢,, is a position of the nth “1”
in the sequence z, then (sz), := s, for n € N. Clearly, all subsequences of s can be coded in this
manner (and the coding is one-to-one). It is known that the Cantor space {0, 1} equipped with the
product topology is complete. Observe that T is a G subset of {0, 1}, therefore by the Alexandrov
theorem, it is completely metrizable. So, we may apply the Baire category theorem to the space T
while studying sets of subsequences of s.

Secondly, we are interested in rearrangements of the sequence s. Recall that NN equipped with
the product topology is a complete space, and the set P C NN of all bijections from N onto itself
(permutations of N) is a Gs subspace [19, p. 66], so it is completely metrizable. Hence the Baire
category theorem works in P. Rearrangements of s are sequences of the form (s ,)) for p € P.

Let us recall some useful definitions and facts on ideals of subsets of N (cf. [14],[8]). We say that
an ideal Z C P(N) is admissible if N ¢ Z and the ideal Fin of all finite subsets of N is contained in Z.
From now on, we will consider only admissible ideals; we will simply call them ¢deals on N. Ideals on
N can be treated (via the characteristic functions) as subsets of the Polish space {0, 1}, so they can
have the Baire property, be Borel, analytic, coanalytic, and so on.

The following important fact is due to Jalali-Naini [12] and Talagrand [20]; see also [21, Theorem
1, Section §].

Lemma 1.1. Let Z be an ideal on N. The following conditions are equivalent:

e 7 has the Baire property;
e T is meager;
e there is an infinite sequence n1 < ng < ... of integers in N such that no member of T contains

infinitely many intervals [ni,n;11) in N.

2010 Mathematics Subject Classification. 40A35, 40A05, 54E52, 28A05.

Key words and phrases. 1deal convergence, Baire category, Lebesgue measure, subsequence, rearrangement.
1



2 MAREK BALCERZAK, SZYMON GLAB, AND ARTUR WACHOWICZ

An ideal Z on N is called mazimal if there is no ideal on N which is a proper superset of Z. It is
well known that Z is maximal if and only if, for every partition {A, B} of N into infinite sets, exactly
one of the conditions A ¢ Z, B ¢ 7 is true.

If 7 is an ideal on N and (s,) is a sequence of reals, we say (cf. [14]) that (s,) is Z-convergent to
t € R (and write Z-lim,, s,, = t) if for every € > 0 we have {n € N: |s,, —t| > ¢} € Z. It is easy to
see that if Z = Fin, we get the usual convergence of (s;) to t. Also, let us mention the case when 7
equals Z,, the density ideal which consists of sets A C N with asymptotic density zero. (Recall that
the asymptotic density of A C N is given by d(A) := lim, |AN[1,n]|/n, provided the limit exists.) In
this case we speak about statistical convergence (see [9], [11]). For several interesting applications of

statistical and ideal convergence, see for instance [10],[5],[7],[1],[4].

2. RESULTS ON THE BAIRE CATEGORY

Given an ideal Z on N and a divergent sequence s = (s,) € RY, the Baire category (in the spaces

T and P, respectively) of the following two sets will be investigated:
ST .= {x € T: sz is I-convergent}, R :={pe P: (8p(n)) 18 Z-convergent }.

The motivation of such studies comes from the results by Miller and Orhan [16] who proved that for
T := 1, these sets are of the first category. From now on, sets of the first category will be called

meager, and residual sets will be called comeager.

Theorem 2.1. Let Z be an ideal on N with the Baire property and let s = (s,,) be a divergent sequence

of reals. Then the sets ST and RL are meager in T and P, respectively.

Proof. Note that, if s is divergent to oo or to —oo, then ST = () = RZ. Indeed, if a subsequence s’ of
s is Z-convergent to t € R, then a subsequence of s’ is convergent to ¢ which is impossible. Also, if a
rearrangement s” = (sp(,)) of s is Z-convergent to ¢ € R, then a subsequence of 5" is convergent to ¢
which is impossible. Consequently, from now on we assume that s has at least two different partial
limits a, b where —oco < a < b < co. Pick «, 8 such that a < a < 8 < b.

At first we will show that SZ is meager. Since Z has the Baire property, by Lemma 1.1 fix an
infinite sequence n; < ny < ... of integers in N such that no member of Z contains infinitely many

intervals [n;,n;11). For any m € N, define
Api={reT: (FkeN)(ng >m & (52) [y ne )< @ & (5T) Tnpyrnese)= B}

(Here (s2) [[ny.np,0)< @ means that (sx); < o for each i € [ng, ngi1).)

Note that (,,cy Am € T\ SZ. Indeed, if z € (),,cry Am, each of the sets {n € N: (sz), < a} and
{n € N: (sx),, > B} contains infinitely many intervals of the form [ny, nx4+1), hence it does not belong
to Z. Thus sx is not Z-convergent. Consequently, it suffices to show that every set A,, is comeager
inT.

Fix m € N. We will prove that every open set U from a standard countable base of topology in
T (inherited from {0,1}Y) contains an open subset included in A,,. This will demonstrate that A,,
contains a dense G set, hence it is comeager.

So, consider a basic open set

U:==Tn {x € {0,1}": z extends (z1,. .. ,xd)}.
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Without loss of generality, we may assume that the sequence T := (x1,...,x4) contains at least m
ones (in fact, we may assume that every member of the base satisfies this property). Let the number
of ones in T be equal to t > m. Put k := min{i € N: n; > t}. We can extend T to a sequence
(x1,...,x4) in which there are precisely ny — 1 ones and z, := 1. Then proceed as follows. Since a is
a limit point of the sequence s, find inductively indices

g <lngt1 < 00 <lpyg—1,
greater than d, for which the respective terms of the sequence s are < . Let x;, for these indices 1,
be equal to 1, and consider the next extension of T to a sequence

(1, Ty e Ty o5 Ty, 1)
where the remaining terms are filled up by zeros.
In the same manner, since b is a limit number of s, we can find the next indices
ink+1 < ink+1+1 e < Z‘nk+2_17

for which the respective terms of the sequence s are > 3. Let x;, for these indices 7, be equal to 1,
and consider the final extension of T to a sequence

% = (:L‘l, e ,:L‘q, .. .:L'ink, ey $i”k+1—1’xi"k+1 e ,:L'ink+2_l)
where the remaining terms are filled up by zeros. Let

V:=Tn {a; € {0,1}: z extends f} .

Then V is an open subset of U. Moreover, V C A, since, if z € V, then conditions ny > m,
(8) Tnpnps) < @ and (8T) ([, ny,0)> B are fulfilled.
The proof for Rf is similar. For any m € N, let

Ay ={pe P: GkeN)(nx >m & (sp() Memes) S @ & 8p0) Tnggani2)> By
We show that every set A, is comeager in P. So, fix m € N and consider a basic open set
U:=PnN {p e NV p extends E}

where T := (z1,...,%4) is a sequence with distinct terms. We may assume that d > m. Pick the

smallest k € N such that ni > d. Then we can choose distinct numbers

p(d+ 1)7 s 7p<nk)7 s 7p(nk+1 - 1))p(nk+1)7 s 7p(nk+2 - ]-)

taken from N\ {z1,...,24} and fulfilling the following conditions:

o s,y Safori=ngng+1,...,npp1 — 1
® s,y > Blori=mng,np + 1,00 g0 — 1
Put
T:=(21,..., 24 ... p(nk), ..., p(ngs1 — 1), p(ngr1) -, p(ngao — 1)
and

V::Pﬁ{peNN: xextends?}.
Then V is open and included in A,, N U. This implies that A,, is comeager in P, and so is A :=
Mimen Am- Hence RE included in P\ A is meager. O
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Theorem 2.1 generalizes results of [16, Theorems 3.1, 5.1(b)] dealing with a special case when
7 :=7Z4. Note that, in [16], a different (but equivalent) approach was proposed to code subsequences
(instead of = € {0,1}"N, binary expansions of reals x € (0, 1] are used).

Let us show some consequences of Theorem 2.1. We will formulate several equivalent conditions
for the usual convergence of a sequence in the language of the Baire category of ideal convergent

subsequences and rearrangements.

Corollary 2.2. Let s = (sy,) be a sequence of reals and let T be an ideal on N with the Baire property.
The following conditions are equivalent:
(i) s is convergent;
(ii) S
(iii) SZ is comeager in T';
)

(iv) ST is nonmeager in T.

Proof. To show (i)=-(iii) recall that, if (i) holds, say s is convergent to ¢t € R, then all subsequences
of s are convergent to t, and also Z-convergent to t. Hence ST = T and so, (ii) is true. Implications

(ii)=-(iii) and (iii)=-(iv) are trivial, and Theorem 2.1 yields implication (iv)=(i). O

Analogously, we obtain

Corollary 2.3. Let s = (s,) be a sequence of reals and let T be an ideal on N with the Baire property.

The following conditions are equivalent:

(i) s is convergent;

)
(iii) RZ is comeager in P;
)

RT is nonmeager in P.

Observe that, if 7 is a maximal ideal on N, the assertion of Theorem 2.1 is false. Indeed, it is
known that every bounded sequence of reals is Z-convergent (cf. [14, Lemma 5.2]). Hence it suffices
to consider a bounded divergent sequence s and then SZ = T, RZ = P. Note that maximal ideals do
not have the Baire property (cf. [13, 8.50]).

3. SOME RESULTS IN THE MEASURE CASE

It is natural to ask whether a measure counterpart of Theorem 2.1 is true in the case of the set SZ.
Namely, consider the uniform probability measure on {0, 1} and let © denote the respective product
measure on {0, 1} which sometimes is called Lebesgue measure on {0, 1} (cf. [19, Example 3.4.10]).
In fact, p is strictly associated with linear Lebesgue measure on [0, 1] (when one uses the Cantor
continuous function from {0, 1} onto [0, 1]). Then, by measurable subsets of {0,1}" we mean sets
belonging to the p-completion of the respective product o-algebra on {0, 1}N. Of course, T as a
cocountable subset of {0, 1} is of full y-measure (that is u(7) = 1). If we treat {0,1} as the group
Zs, the space {0, 1}N can be treated as the compact metric group (ZQ)N, and then p is the respective
Haar measure.

We propose a preliminary observation (Proposition 3.1) which shows a dichotomy for SZ, provided

that Z is an analytic or a coanalytic ideal on N (thus it is a special measurable subset of {0, 1}).
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We need one more notion. Given an ideal Z on N, we say that a sequence (sy) of reals satisfies
Z-Cauchy condition (cf. [6]) if for every € > 0 there is N € N such that {n € N: |s,, —sy| > e} € T.
In a similar way, one can define Z-convergence and Z-Cauchy condition in a metric space.

Recall that (cf. [6]), in a complete metric space, the classes of Z-convergent and of Z-Cauchy

sequences are equal. So, the sets SZ can be expressed in the form
(1) ST=() U{zeT: {i e N: |(sa); — (s2)n]| >} € T};
>0 NeN

Proposition 3.1. Let s € RY and let T be an ideal on N which is an analytic or a coanalytic subset

of {0, 1}, Then ST is analytic or coanalytic in T, and either of measure 0 or 1.

Proof. A set E C {0,1}N (see [17]) is called a tail set if, whenever x € E and y € {0, 1} differs from
z in a finite number of coordinates, then y € E. By [17, Theorem 21.3] if a tail set is measurable
then it is either of measure 0 or 1. Observe that ST, treated as a subset of {0, 1}, is a tail set. If we
show that SZ is measurable, we will get the second assertion (note that {0, 1} \ 7" is countable).

We consider the expression (1) with € taken from the set Q4 of positive rationals. For ¢ € Q4 and
N € N define f. y: T — {0, 1} as the sequence of characteristic functions

fE,N(x) = (X{iGN: |(sw)i—(5$)N\26}(j))j€Na zeT.

Then ST = Neco, Unen fg]{,[I] To finish the proof we need to show that every function f. y is
continuous since then (by the respective properties of analytic and coanalytic sets; see [19]) the set
SSI will be analytic or coanalytic, hence it will be measurable.

Let f := fen. It suffices to prove that every coordinate f; := X{ien: |(sz);—(se)n|>e} () Of f is
continuous. Fix j € N. Let x, € T for n € N and assume that z,, - = € T. We will show that
[i(xn) = fj(x). Let for example f;(x) = 1 (the second case is analogous). Hence |(sz); — (sz)n| > €.
Denote by k the maximum of the Nth and the jth positions of ones in the sequence x. Since x, — =z,
there is ng € N such that, for any n > ng, the first k terms of x, and z are equal. That is why

|(s2n)j — (szpn)n| > €, and finally fj(x,) = fj(x) =1 for any n > ng. O

Remark 1. In an analogous way, one can prove that, if Z is analytic or coanalytic, then for any

sequence s € RN and any ¢t € R, the set
{;1: €T:ZI-lim(sx); = t} = ﬂ {zeT: {ieN:|(sx); —t| >} €T}
1
eeQt

is analytic or coanalytic, and either of measure 0 or 1 (observe that this is a tail set).

In [15], [16], the measure of ST was investigated, in the case Z := Z,. Note that Z; is an F,5 subset
of {0, 1} (cf. [8]). We summarize the respective results of [15] and [16] in the following theorem.

Theorem 3.2. ([15],[16]) For Z := Z; and a sequence s = (sy,) of reals, the following conditions are
equivalent:
(i) s is Z-convergent;
(ii) pu({z € T: Z-lim,(sx),, = t}) = 1 for some t € R;
(if) u(ST) = 1.
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Proof. The equivalence (i)<(ii) was shown in [15, Theorem 3|, with Z-lim,, s,, = ¢ in (i). Implication
(ii)=(iii) is obvious. By [16, Theorem 3.5], if s is not Z-convergent, then u(7T\ SZ) = 1. Consequently,
if 4(ST) = 1, then s is Z-convergent. This yields (iii)=(i). O

Theorem 3.2 shows that the measure analogue of Theorem 2.1 is false. Indeed, it suffices to consider
a divergent sequence s which is Zy-convergent and then y(SZ¢) = 1 by Theorem 3.2.

Now, we are going to extend Theorem 3.2 to a wider class of ideals. Let Z be an ideal on N. A
function f: N — N is called bi-Z-invariant if A € T < f[A] € T for every A C N (if “=" is true, we
say that f is Z-invariant). We will need the following fact (cf. [3, Proposition 24]).

Proposition 3.3 ([3]). Let f,g: N — N be bi-Z-invariant injections such that f[N] N g[N] = 0 and
fINJU ¢g[N] = N. Then, for any sequence (sy) of reals and a point t € R, we have

Z-lims, =t < (Z-lim Spin) =t and Z-lim sy,) = t).

For a 0-1 sequence z € T let {n; < ny < ...} = {k € N: 2, = 1}. Define f,: N — N by
fz(k) =ng, k € N, and let Tz := {x € T": f, is bi-Z-invariant}. We will say that an ideal Z on N has
property (G) if u(Tr) = 1.

Theorem 3.4. Let T be an ideal on N. For a sequence s = (sp) of reals, consider the following
conditions:
(i) s is Z-convergent;
(ii) p({z € T: Z-limy,(sz), =t}) =1 for some t € R;
(i) (ST) = 1.
Then (i) and (ii) are equivalent, provided that T has property (G). Implication (ii)=-(iii) is always
true. Implication (iii)=-(i) holds provided that T is analytic or coanalytic and Z has property (G).

Consequently, under these two assumptions on Z, conditions (1),(ii),(iii) are equivalent.

Proof. Assume that Z has property (G). To show (i)=-(ii), assume that Z-lim, s, = ¢t € R. Let
x € Tr. Hence f, is bi-Z-invariant. Let {n; <ns < ...} :={k € N: 2 = 1}. Fix € > 0. Then

{i eN:|(sz);—t| >e} ={i €N:|sp, —t| > e} = fi[{i € N: |s; —t] > €}].

We have {i € N: |s; —t| > e} € Z. Thus f;'[{i € N: |s; —t| > ¢}] € T by the bi-Z-invariance of f,.
Consequently, sz is Z-convergent to t. By property (G) and the choice of z, we obtain (ii).

To show (ii)=-(i), let ¢ € R be such that u(B) = 1 where B := {z € T: Z-lim,(sx), = t}. f x € T,
denote by z¢ := 1 — z, the converse of 2 in the group (Zs)Y, where 1 := (1,1,...). By property (G)
we have p(T7) = 1, hence u(1 —T7) = 1 since p is the Haar measure. Pick z € BNT7z N (1 —T7). Let
{ni <no<...}i={keNia,=1} = fy[N]Jand {m; <mo < ...} :={k € N: zf =1} = f.c[N].
Then f[N] N fue[N] =0, f2[N]JU fzc[N] =N and

I- lim(Sl‘)n =t 1-lims,, =t < Z-lim Sfu(n) = 2
n n n

Z-lim(sz%), =t & I-lim s, = t & I-lim sy . () = t.
n n n

Hence, using the bi-invariance of f, and f.c, we obtain Z-lim,, s, = t by Proposition 3.3.

Implication (ii)=-(iii) is obvious (no extra assumption on Z is needed).
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Now, let Z be analytic or coanalytic, with property (G). To prove (iii)=-(i), we follow some ideas
from [16, Theorem 3.5]. Assume that u(S%) = 1. Pick zg from the set H := TrN(1-T7)NSTN(1—S7T)
which is of y-measure 1. Then f;, and fy¢ are bi-Z-invariant, and the subsequences sz and szj are Z-
convergent to t and ¢/, respectively. If t = ¢/, then (i) follows from Proposition 3.3. Assume that ¢ # t'.
Fix any € H and suppose that sz is Z-convergent to some u ¢ {t,t'}. Take £ > 0 such that the sets
(t—e,t+e), (' —e,t'+¢) and (u—e,u+e¢) are pairwise disjoint. Then {n: |(szg), —t| > e} € Z and
since fy, is Z-invariant, we have {fy,(n): |(szo)n —t| > €} € Z. Thus {fz,(n): [(sxo)n —u| < e} € L.
Similarly {fze(n): |(sz§)n —u|l < e} € Z. Since {n: |(sx), —u| > e} € Z, then {fz(n): [(sz)n — u| >
e} € Z. Moreover, {fz(n): [(s2)n —u| < e} C {fzo(n): [(sm0)n —u| <e}U{fac(n): |(s2§)n —ul < e}
Therefore f, maps N onto a set from Z which contradicts the bi-Z-invariance of f,. Hence, for
p-almost every x € T', the sequence sz is Z-convergent either to ¢ or to t'.

Since Z is analytic or coanalytic, by Remark 1 we infer that {z € T': (sz) is Z-convergent to t}
and {x € T: (sz) is Z-convergent to t'} are 0-1 sets with respect to u. However, their union is of full

p-measure. Hence one of them has full y-measure. Now, we can use (ii)=-(i). O

Let NR :={x € T: d({n € N: z,, = 1}) = 1/2}. Recall that u(NR) = 1, by the Borel theorem
on normal numbers. If 7 = 7, the set {x € T': f, is bi-Z-invariant} contains N R and therefore it is
of full y-measure. (This was used in the proofs of [15, Theorem 3] and [16, Theorem 3.5].) We will
present two classes of ideals Z that fulfil the inclusion NR C T7. This will witness that the class of
ideals with property (G) is quite rich.

Let (a,) be a sequence of nonnegative real numbers with ) a, = co. By Z(a,) denote the ideal
of all sets A C N with ), a, < co. This is called the summable ideal associated with (ay); cf. [8].

Another class consists of density-like ideals considered in [2]. For any « € (0, 1] let

ANl
Z{a) : {AC N:limsupw :0}.
n—00 n

Note that Z(1) = Zy.

Proposition 3.5. (I) Let (a,) be a nonincreasing sequence of positive reals with ) an, = 0.
Assume that there is C > 0 such that a,/ag, < C for each n € N. Then L,y has property (G).
(IT) The ideal Z{cx) has property (G) for each o € (0,1].

Proof. Fix x € NR. We claim that f,(n) < 4n for all but finitely many n’s. Suppose not. Then

there are infinitely many n’s such that f,(n) > 4n. Fix ng € N such that

|{i§n:xi:1}]>l
n 3

for every n > ng. Take n; > ng with fz(n1) > 4n;. Since f, is increasing, f,(n) > 4n; for every
n > ny. Thus
i <anim =1} _1
4ny 4’

a contradiction. From now on, we fix my € N such that f,(n) < 4n for all n > mgy. We will prove

that f, is bi-Z-invariant for ideals Z considered in statements (I) and (II).
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I) Let A C N. Since (a,) is nonincreasing, A € Z, y implies f;[A] € Z;, y. Assume that
( n) ( n)
fz [A] S I(an)~ Then
Z an < C? Z a4pn < Z ag,(n) < 00
neAn>mg neAn>mg neAn>mg

which shows that A € Z(,,,).
(IT) Note that each increasing injection from N to N is Z(«)-invariant. Let A C N and assume that
fz[A] € Z{w). Fix € > 0 and find ko > mg such that for all k > ko we have

{faln) Shine A} _ e
ke do’

Then for all £ > k¢ we have

{n < k:ne A} {fz(n) <4k:n e A}| <.
ke (4k)e -

which shows that A € Z{«a). O

<4

Now, we present an example of summable ideal and a sequence of reals for which implication

(i)=(iii) in Theorem 3.4 is false.

Example 2. Define Z as follows: for A C Nlet A € Z < AN (2N + 1) € Fin. Note that Z is a
summable ideal; namely 7 = I(an) where ag,, := 0 and ag,11 := 1 for all n € N. By the Borel-Cantelli
lemma, a sequence x € T contains infinitely many blocks (1,0, 1,1,0,1) with probability 1 (i.e. with

p-measure 1). Define
E:={x€T: 2y =Tpio=Tkts = Thas = 1,Tptr1 = T4 = 0, for infinitely many k € N}.

Let s := (ay). Clearly, s is Z-convergent to 1. Observe that every Z-convergent subsequence of s with

odd indices is convergent in the usual way. We will show that sz is not Z-convergent for every z € F.
Fix x € E. By K denote the infinite set of indices k such that (z,...,xx+5) = (1,0,1,1,0,1). Let

{k € Niz, =1} = {n1 <na <ng <...}. To prove that sz is not Z-convergent, we need to show

that the sequence (@n,,_,)ren contains infinitely many zeros and infinitely many ones. This holds

since, for infinitely many even k’s, the indices n; are odd, and for infinitely many odd k’s, the indices

ny are also odd. Ideed, fix k € K. Consider the following four cases.

Case 1. k is even and ny is even. Then k + 2 is even and ngyo is odd, and k + 5 is odd and ngy5 is

odd.

Case 2. k is even and ng is odd. Then k 4 3 is odd and ng43 is odd.

Case 3. k is odd and ny is even. Then k + 2 is odd and ng49 is odd, and k£ + 5 is even and ng5 is

odd.

Case 4. k is odd and ny is odd. Then k + 3 is even and ny49 is odd.

Since sz is not Z-convergent for every = € E, we have u(S%) = 0.

Note that summable ideals and ideals of the form Z(a), o € (0, 1], are analytic P-ideals. An ideal Z
on N is called a P-ideal if for any sequence (Ay,) of sets in Z there exists A € Z such that A, \ A € Fin
for every n € N. We leave unsolved the problem how to describe the class of analytic P-ideals for

which the equivalence of conditions (i),(ii),(iii) in Theorem 3.2 is true. Recall an important theorem
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of Solecki [18]: Z is an analytic P-ideal on N if and only if Z = Exh(¢) for some lower semicontinuous
submeasure ¢ on N (where Exh(y) := {A C N: lim, p(A4\ [1,n]) = 0}).
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