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Abstract. We investigate the Baire category of I-convergent subsequences and rearrangements of a

divergent sequence s = (sn) of reals, if I is an ideal on N having the Baire property. We also discuss

the measure of the set of I-convergent subsequences for some classes of ideals on N. Our results

generalize theorems due to H. Miller and C. Orhan (2001).

1. Introduction

Denote N := {1, 2, . . . }. Let s = (sn) ∈ RN be a given sequence. Firstly, we are interested in

subsequences of s. Let T ⊂ {0, 1}N denote the set of all sequences with infinite number of ones. For

x = (xn) ∈ T we generate a subsequence sx of s in such a way that, if tn is a position of the nth “1”

in the sequence x, then (sx)n := stn for n ∈ N. Clearly, all subsequences of s can be coded in this

manner (and the coding is one-to-one). It is known that the Cantor space {0, 1}N equipped with the

product topology is complete. Observe that T is a Gδ subset of {0, 1}N, therefore by the Alexandrov

theorem, it is completely metrizable. So, we may apply the Baire category theorem to the space T

while studying sets of subsequences of s.

Secondly, we are interested in rearrangements of the sequence s. Recall that NN equipped with

the product topology is a complete space, and the set P ⊂ NN of all bijections from N onto itself

(permutations of N) is a Gδ subspace [19, p. 66], so it is completely metrizable. Hence the Baire

category theorem works in P . Rearrangements of s are sequences of the form (sp(n)) for p ∈ P .

Let us recall some useful definitions and facts on ideals of subsets of N (cf. [14],[8]). We say that

an ideal I ⊂ P(N) is admissible if N /∈ I and the ideal Fin of all finite subsets of N is contained in I.

From now on, we will consider only admissible ideals; we will simply call them ideals on N. Ideals on

N can be treated (via the characteristic functions) as subsets of the Polish space {0, 1}N, so they can

have the Baire property, be Borel, analytic, coanalytic, and so on.

The following important fact is due to Jalali-Naini [12] and Talagrand [20]; see also [21, Theorem

1, Section 8].

Lemma 1.1. Let I be an ideal on N. The following conditions are equivalent:

• I has the Baire property;

• I is meager;

• there is an infinite sequence n1 < n2 < . . . of integers in N such that no member of I contains

infinitely many intervals [ni, ni+1) in N.
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An ideal I on N is called maximal if there is no ideal on N which is a proper superset of I. It is

well known that I is maximal if and only if, for every partition {A,B} of N into infinite sets, exactly

one of the conditions A /∈ I, B /∈ I is true.

If I is an ideal on N and (sn) is a sequence of reals, we say (cf. [14]) that (sn) is I-convergent to

t ∈ R (and write I-limn sn = t) if for every ε > 0 we have {n ∈ N : |sn − t| ≥ ε} ∈ I. It is easy to

see that if I = Fin, we get the usual convergence of (sn) to t. Also, let us mention the case when I
equals Id, the density ideal which consists of sets A ⊂ N with asymptotic density zero. (Recall that

the asymptotic density of A ⊂ N is given by d(A) := limn |A∩ [1, n]|/n, provided the limit exists.) In

this case we speak about statistical convergence (see [9], [11]). For several interesting applications of

statistical and ideal convergence, see for instance [10],[5],[7],[1],[4].

2. Results on the Baire category

Given an ideal I on N and a divergent sequence s = (sn) ∈ RN, the Baire category (in the spaces

T and P , respectively) of the following two sets will be investigated:

SIs := {x ∈ T : sx is I-convergent}, RIs := {p ∈ P : (sp(n)) is I-convergent}.

The motivation of such studies comes from the results by Miller and Orhan [16] who proved that for

I := Id these sets are of the first category. From now on, sets of the first category will be called

meager, and residual sets will be called comeager.

Theorem 2.1. Let I be an ideal on N with the Baire property and let s = (sn) be a divergent sequence

of reals. Then the sets SIs and RIs are meager in T and P , respectively.

Proof. Note that, if s is divergent to ∞ or to −∞, then SIs = ∅ = RIs . Indeed, if a subsequence s′ of

s is I-convergent to t ∈ R, then a subsequence of s′ is convergent to t which is impossible. Also, if a

rearrangement s′′ = (sp(n)) of s is I-convergent to t ∈ R, then a subsequence of s′′ is convergent to t

which is impossible. Consequently, from now on we assume that s has at least two different partial

limits a, b where −∞ ≤ a < b ≤ ∞. Pick α, β such that a < α < β < b.

At first we will show that SIs is meager. Since I has the Baire property, by Lemma 1.1 fix an

infinite sequence n1 < n2 < . . . of integers in N such that no member of I contains infinitely many

intervals [ni, ni+1). For any m ∈ N, define

Am := {x ∈ T : (∃k ∈ N)(nk > m & (sx) �[nk,nk+1)≤ α & (sx) �[nk+1,nk+2)≥ β)}.

(Here (sx) �[nk,nk+1)≤ α means that (sx)i ≤ α for each i ∈ [nk, nk+1).)

Note that
⋂
m∈NAm ⊂ T \ SIs . Indeed, if x ∈

⋂
m∈NAm, each of the sets {n ∈ N : (sx)n ≤ α} and

{n ∈ N : (sx)n ≥ β} contains infinitely many intervals of the form [nk, nk+1), hence it does not belong

to I. Thus sx is not I-convergent. Consequently, it suffices to show that every set Am is comeager

in T .

Fix m ∈ N. We will prove that every open set U from a standard countable base of topology in

T (inherited from {0, 1}N) contains an open subset included in Am. This will demonstrate that Am

contains a dense Gδ set, hence it is comeager.

So, consider a basic open set

U := T ∩
{
x ∈ {0, 1}N : x extends (x1, . . . , xd)

}
.
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Without loss of generality, we may assume that the sequence x := (x1, . . . , xd) contains at least m

ones (in fact, we may assume that every member of the base satisfies this property). Let the number

of ones in x be equal to t ≥ m. Put k := min{i ∈ N : ni > t}. We can extend x to a sequence

(x1, . . . , xq) in which there are precisely nk − 1 ones and xq := 1. Then proceed as follows. Since a is

a limit point of the sequence s, find inductively indices

ink
< ink+1 < · · · < ink+1−1,

greater than d, for which the respective terms of the sequence s are ≤ α. Let xi, for these indices i,

be equal to 1, and consider the next extension of x to a sequence

(x1, . . . , xq, . . . xink
, . . . , xink+1−1)

where the remaining terms are filled up by zeros.

In the same manner, since b is a limit number of s, we can find the next indices

ink+1
< ink+1+1 · · · < ink+2−1,

for which the respective terms of the sequence s are ≥ β. Let xi, for these indices i, be equal to 1,

and consider the final extension of x to a sequence

x := (x1, . . . , xq, . . . xink
, . . . , xink+1−1 , xink+1

. . . , xink+2−1)

where the remaining terms are filled up by zeros. Let

V := T ∩
{
x ∈ {0, 1}N : x extends x

}
.

Then V is an open subset of U . Moreover, V ⊂ Am since, if x ∈ V , then conditions nk > m,

(sx) �[nk,nk+1)≤ α and (sx) �[nk+1,nk+2)≥ β are fulfilled.

The proof for RIs is similar. For any m ∈ N, let

Am :=
{
p ∈ P : (∃k ∈ N)(nk > m & (sp(·) �[nk,nk+1)≤ α & sp(·) �[nk+1,nk+2)≥ β)

}
.

We show that every set Am is comeager in P . So, fix m ∈ N and consider a basic open set

U := P ∩
{
p ∈ NN : p extends x

}
where x := (x1, . . . , xd) is a sequence with distinct terms. We may assume that d ≥ m. Pick the

smallest k ∈ N such that nk > d. Then we can choose distinct numbers

p(d+ 1), . . . , p(nk), . . . , p(nk+1 − 1), p(nk+1), . . . , p(nk+2 − 1)

taken from N \ {x1, . . . , xd} and fulfilling the following conditions:

• sp(i) ≤ α for i = nk, nk + 1, . . . , nk+1 − 1;

• sp(i) ≥ β for i = nk+1, nk+1 + 1, . . . , nk+2 − 1.

Put

x := (x1, . . . , xd, . . . p(nk), . . . , p(nk+1 − 1), p(nk+1) . . . , p(nk+2 − 1)

and

V := P ∩
{
p ∈ NN : x extends x

}
.

Then V is open and included in Am ∩ U . This implies that Am is comeager in P , and so is A :=⋂
m∈NAm. Hence RIs included in P \A is meager. �
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Theorem 2.1 generalizes results of [16, Theorems 3.1, 5.1(b)] dealing with a special case when

I := Id. Note that, in [16], a different (but equivalent) approach was proposed to code subsequences

(instead of x ∈ {0, 1}N, binary expansions of reals x ∈ (0, 1] are used).

Let us show some consequences of Theorem 2.1. We will formulate several equivalent conditions

for the usual convergence of a sequence in the language of the Baire category of ideal convergent

subsequences and rearrangements.

Corollary 2.2. Let s = (sn) be a sequence of reals and let I be an ideal on N with the Baire property.

The following conditions are equivalent:

(i) s is convergent;

(ii) SIs = T ;

(iii) SIs is comeager in T ;

(iv) SIs is nonmeager in T .

Proof. To show (i)⇒(iii) recall that, if (i) holds, say s is convergent to t ∈ R, then all subsequences

of s are convergent to t, and also I-convergent to t. Hence SIs = T and so, (ii) is true. Implications

(ii)⇒(iii) and (iii)⇒(iv) are trivial, and Theorem 2.1 yields implication (iv)⇒(i). �

Analogously, we obtain

Corollary 2.3. Let s = (sn) be a sequence of reals and let I be an ideal on N with the Baire property.

The following conditions are equivalent:

(i) s is convergent;

(ii) RIs = P ;

(iii) RIs is comeager in P ;

(iv) RIs is nonmeager in P .

Observe that, if I is a maximal ideal on N, the assertion of Theorem 2.1 is false. Indeed, it is

known that every bounded sequence of reals is I-convergent (cf. [14, Lemma 5.2]). Hence it suffices

to consider a bounded divergent sequence s and then SIs = T , RIs = P . Note that maximal ideals do

not have the Baire property (cf. [13, 8.50]).

3. Some results in the measure case

It is natural to ask whether a measure counterpart of Theorem 2.1 is true in the case of the set SIs .

Namely, consider the uniform probability measure on {0, 1} and let µ denote the respective product

measure on {0, 1}N which sometimes is called Lebesgue measure on {0, 1}N (cf. [19, Example 3.4.10]).

In fact, µ is strictly associated with linear Lebesgue measure on [0, 1] (when one uses the Cantor

continuous function from {0, 1}N onto [0, 1]). Then, by measurable subsets of {0, 1}N we mean sets

belonging to the µ-completion of the respective product σ-algebra on {0, 1}N. Of course, T as a

cocountable subset of {0, 1} is of full µ-measure (that is µ(T ) = 1). If we treat {0, 1} as the group

Z2, the space {0, 1}N can be treated as the compact metric group (Z2)N, and then µ is the respective

Haar measure.

We propose a preliminary observation (Proposition 3.1) which shows a dichotomy for SIs , provided

that I is an analytic or a coanalytic ideal on N (thus it is a special measurable subset of {0, 1}N).
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We need one more notion. Given an ideal I on N, we say that a sequence (sn) of reals satisfies

I-Cauchy condition (cf. [6]) if for every ε > 0 there is N ∈ N such that {n ∈ N : |sn − sN | ≥ ε} ∈ I.

In a similar way, one can define I-convergence and I-Cauchy condition in a metric space.

Recall that (cf. [6]), in a complete metric space, the classes of I-convergent and of I-Cauchy

sequences are equal. So, the sets SIs can be expressed in the form

(1) SIs =
⋂
ε>0

⋃
N∈N
{x ∈ T : {i ∈ N : |(sx)i − (sx)N | ≥ ε} ∈ I};

Proposition 3.1. Let s ∈ RN and let I be an ideal on N which is an analytic or a coanalytic subset

of {0, 1}N. Then SIs is analytic or coanalytic in T , and either of measure 0 or 1.

Proof. A set E ⊂ {0, 1}N (see [17]) is called a tail set if, whenever x ∈ E and y ∈ {0, 1}N differs from

x in a finite number of coordinates, then y ∈ E. By [17, Theorem 21.3] if a tail set is measurable

then it is either of measure 0 or 1. Observe that SIs , treated as a subset of {0, 1}N, is a tail set. If we

show that SIs is measurable, we will get the second assertion (note that {0, 1}N \ T is countable).

We consider the expression (1) with ε taken from the set Q+ of positive rationals. For ε ∈ Q+ and

N ∈ N define fε,N : T → {0, 1}N as the sequence of characteristic functions

fε,N (x) := (χ{i∈N : |(sx)i−(sx)N |≥ε}(j))j∈N, x ∈ T.

Then SIs =
⋂
ε∈Q+

⋃
N∈N f

−1
ε,N [I]. To finish the proof we need to show that every function fε,N is

continuous since then (by the respective properties of analytic and coanalytic sets; see [19]) the set

SIs will be analytic or coanalytic, hence it will be measurable.

Let f := fε,N . It suffices to prove that every coordinate fj := χ{i∈N : |(sx)i−(sx)N |≥ε}(j) of f is

continuous. Fix j ∈ N. Let xn ∈ T for n ∈ N and assume that xn → x ∈ T . We will show that

fj(xn)→ fj(x). Let for example fj(x) = 1 (the second case is analogous). Hence |(sx)j− (sx)N | ≥ ε.
Denote by k the maximum of the Nth and the jth positions of ones in the sequence x. Since xn → x,

there is n0 ∈ N such that, for any n ≥ n0, the first k terms of xn and x are equal. That is why

|(sxn)j − (sxn)N | ≥ ε, and finally fj(xn) = fj(x) = 1 for any n ≥ n0. �

Remark 1. In an analogous way, one can prove that, if I is analytic or coanalytic, then for any

sequence s ∈ RN and any t ∈ R, the set{
x ∈ T : I- lim

i
(sx)i = t

}
=
⋂
ε∈Q+

{x ∈ T : {i ∈ N : |(sx)i − t| ≥ ε} ∈ I}

is analytic or coanalytic, and either of measure 0 or 1 (observe that this is a tail set).

In [15], [16], the measure of SIs was investigated, in the case I := Id. Note that Id is an Fσδ subset

of {0, 1}N (cf. [8]). We summarize the respective results of [15] and [16] in the following theorem.

Theorem 3.2. ([15],[16]) For I := Id and a sequence s = (sn) of reals, the following conditions are

equivalent:

(i) s is I-convergent;

(ii) µ({x ∈ T : I- limn(sx)n = t}) = 1 for some t ∈ R;

(iii) µ(SIs ) = 1.
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Proof. The equivalence (i)⇔(ii) was shown in [15, Theorem 3], with I-limn sn = t in (i). Implication

(ii)⇒(iii) is obvious. By [16, Theorem 3.5], if s is not I-convergent, then µ(T \SIs ) = 1. Consequently,

if µ(SIs ) = 1, then s is I-convergent. This yields (iii)⇒(i). �

Theorem 3.2 shows that the measure analogue of Theorem 2.1 is false. Indeed, it suffices to consider

a divergent sequence s which is Id-convergent and then µ(SIds ) = 1 by Theorem 3.2.

Now, we are going to extend Theorem 3.2 to a wider class of ideals. Let I be an ideal on N. A

function f : N→ N is called bi-I-invariant if A ∈ I ⇔ f [A] ∈ I for every A ⊂ N (if “⇒” is true, we

say that f is I-invariant). We will need the following fact (cf. [3, Proposition 24]).

Proposition 3.3 ([3]). Let f, g : N → N be bi-I-invariant injections such that f [N] ∩ g[N] = ∅ and

f [N] ∪ g[N] = N. Then, for any sequence (sn) of reals and a point t ∈ R, we have

I- lim
n
sn = t⇔ (I- lim

n
sf(n) = t and I- lim

n
sg(n) = t).

For a 0-1 sequence x ∈ T let {n1 < n2 < . . . } := {k ∈ N : xk = 1}. Define fx : N → N by

fx(k) = nk, k ∈ N, and let TI := {x ∈ T : fx is bi-I-invariant}. We will say that an ideal I on N has

property (G) if µ(TI) = 1.

Theorem 3.4. Let I be an ideal on N. For a sequence s = (sn) of reals, consider the following

conditions:

(i) s is I-convergent;

(ii) µ({x ∈ T : I- limn(sx)n = t}) = 1 for some t ∈ R;

(iii) µ(SIs ) = 1.

Then (i) and (ii) are equivalent, provided that I has property (G). Implication (ii)⇒(iii) is always

true. Implication (iii)⇒(i) holds provided that I is analytic or coanalytic and I has property (G).

Consequently, under these two assumptions on I, conditions (i),(ii),(iii) are equivalent.

Proof. Assume that I has property (G). To show (i)⇒(ii), assume that I-limn sn = t ∈ R. Let

x ∈ TI . Hence fx is bi-I-invariant. Let {n1 < n2 < . . . } := {k ∈ N : xk = 1}. Fix ε > 0. Then

{i ∈ N : |(sx)i − t| ≥ ε} = {i ∈ N : |sni − t| ≥ ε} = f−1
x [{i ∈ N : |si − t| ≥ ε}].

We have {i ∈ N : |si − t| ≥ ε} ∈ I. Thus f−1
x [{i ∈ N : |si − t| ≥ ε}] ∈ I by the bi-I-invariance of fx.

Consequently, sx is I-convergent to t. By property (G) and the choice of x, we obtain (ii).

To show (ii)⇒(i), let t ∈ R be such that µ(B) = 1 where B := {x ∈ T : I- limn(sx)n = t}. If x ∈ T ,

denote by xc := 111− x, the converse of x in the group (Z2)N, where 111 := (1, 1, . . . ). By property (G)

we have µ(TI) = 1, hence µ(111−TI) = 1 since µ is the Haar measure. Pick x ∈ B ∩TI ∩ (111−TI). Let

{n1 < n2 < . . . } := {k ∈ N : xk = 1} = fx[N] and {m1 < m2 < . . . } := {k ∈ N : xck = 1} = fxc [N].

Then fx[N] ∩ fxc [N] = ∅, fx[N] ∪ fxc [N] = N and

I- lim
n

(sx)n = t⇔ I- lim
n
sni = t⇔ I- lim

n
sfx(n) = t,

I- lim
n

(sxc)n = t⇔ I- lim
n
smi = t⇔ I- lim

n
sfxc (n) = t.

Hence, using the bi-invariance of fx and fxc , we obtain I-limn sn = t by Proposition 3.3.

Implication (ii)⇒(iii) is obvious (no extra assumption on I is needed).
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Now, let I be analytic or coanalytic, with property (G). To prove (iii)⇒(i), we follow some ideas

from [16, Theorem 3.5]. Assume that µ(SIs ) = 1. Pick x0 from the set H := TI∩(111−TI)∩SIs ∩(111−SIs )

which is of µ-measure 1. Then fx0 and fxc0 are bi-I-invariant, and the subsequences sx0 and sxc0 are I-

convergent to t and t′, respectively. If t = t′, then (i) follows from Proposition 3.3. Assume that t 6= t′.

Fix any x ∈ H and suppose that sx is I-convergent to some u /∈ {t, t′}. Take ε > 0 such that the sets

(t− ε, t+ ε), (t′− ε, t′+ ε) and (u− ε, u+ ε) are pairwise disjoint. Then {n : |(sx0)n− t| ≥ ε} ∈ I and

since fx0 is I-invariant, we have {fx0(n) : |(sx0)n − t| ≥ ε} ∈ I. Thus {fx0(n) : |(sx0)n − u| < ε} ∈ I.

Similarly {fxc0(n) : |(sxc0)n − u| < ε} ∈ I. Since {n : |(sx)n − u| ≥ ε} ∈ I, then {fx(n) : |(sx)n − u| ≥
ε} ∈ I. Moreover, {fx(n) : |(sx)n− u| < ε} ⊂ {fx0(n) : |(sx0)n− u| < ε} ∪ {fxc0(n) : |(sxc0)n− u| < ε}.
Therefore fx maps N onto a set from I which contradicts the bi-I-invariance of fx. Hence, for

µ-almost every x ∈ T , the sequence sx is I-convergent either to t or to t′.

Since I is analytic or coanalytic, by Remark 1 we infer that {x ∈ T : (sx) is I-convergent to t}
and {x ∈ T : (sx) is I-convergent to t′} are 0-1 sets with respect to µ. However, their union is of full

µ-measure. Hence one of them has full µ-measure. Now, we can use (ii)⇒(i). �

Let NR := {x ∈ T : d({n ∈ N : xn = 1}) = 1/2}. Recall that µ(NR) = 1, by the Borel theorem

on normal numbers. If I = Id, the set {x ∈ T : fx is bi-I-invariant} contains NR and therefore it is

of full µ-measure. (This was used in the proofs of [15, Theorem 3] and [16, Theorem 3.5].) We will

present two classes of ideals I that fulfil the inclusion NR ⊂ TI . This will witness that the class of

ideals with property (G) is quite rich.

Let (an) be a sequence of nonnegative real numbers with
∑

n∈N an =∞. By I(an) denote the ideal

of all sets A ⊂ N with
∑

n∈A an <∞. This is called the summable ideal associated with (an); cf. [8].

Another class consists of density-like ideals considered in [2]. For any α ∈ (0, 1] let

I〈α〉 :=

{
A ⊂ N : lim sup

n→∞

|A ∩ [1, n]|
nα

= 0

}
.

Note that I〈1〉 = Id.

Proposition 3.5. (I) Let (an) be a nonincreasing sequence of positive reals with
∑

n∈N an = ∞.

Assume that there is C > 0 such that an/a2n ≤ C for each n ∈ N. Then I(an) has property (G).

(II) The ideal I〈α〉 has property (G) for each α ∈ (0, 1].

Proof. Fix x ∈ NR. We claim that fx(n) ≤ 4n for all but finitely many n’s. Suppose not. Then

there are infinitely many n’s such that fx(n) > 4n. Fix n0 ∈ N such that

|{i ≤ n : xi = 1}|
n

>
1

3

for every n ≥ n0. Take n1 ≥ n0 with fx(n1) > 4n1. Since fx is increasing, fx(n) > 4n1 for every

n ≥ n1. Thus

|{i ≤ 4n1 : xi = 1}|
4n1

≤ 1

4
,

a contradiction. From now on, we fix m0 ∈ N such that fx(n) ≤ 4n for all n ≥ m0. We will prove

that fx is bi-I-invariant for ideals I considered in statements (I) and (II).
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(I) Let A ⊂ N. Since (an) is nonincreasing, A ∈ I(an) implies fx[A] ∈ I(an). Assume that

fx[A] ∈ I(an). Then ∑
n∈A,n≥m0

an ≤ C2
∑

n∈A,n≥m0

a4n ≤
∑

n∈A,n≥m0

afx(n) <∞

which shows that A ∈ I(an).

(II) Note that each increasing injection from N to N is I〈α〉-invariant. Let A ⊂ N and assume that

fx[A] ∈ I〈α〉. Fix ε > 0 and find k0 ≥ m0 such that for all k ≥ k0 we have

|{fx(n) ≤ k : n ∈ A}|
kα

<
ε

4α
.

Then for all k ≥ k0 we have

|{n ≤ k : n ∈ A}|
kα

≤ 4α
|{fx(n) ≤ 4k : n ∈ A}|

(4k)α
≤ ε

which shows that A ∈ I〈α〉. �

Now, we present an example of summable ideal and a sequence of reals for which implication

(i)⇒(iii) in Theorem 3.4 is false.

Example 2. Define I as follows: for A ⊂ N let A ∈ I ⇔ A ∩ (2N + 1) ∈ Fin. Note that I is a

summable ideal; namely I = I(an) where a2n := 0 and a2n+1 := 1 for all n ∈ N. By the Borel-Cantelli

lemma, a sequence x ∈ T contains infinitely many blocks (1, 0, 1, 1, 0, 1) with probability 1 (i.e. with

µ-measure 1). Define

E := {x ∈ T : xk = xk+2 = xk+3 = xk+5 = 1, xk+1 = xk+4 = 0, for infinitely many k ∈ N}.

Let s := (an). Clearly, s is I-convergent to 1. Observe that every I-convergent subsequence of s with

odd indices is convergent in the usual way. We will show that sx is not I-convergent for every x ∈ E.

Fix x ∈ E. By K denote the infinite set of indices k such that (xk, . . . , xk+5) = (1, 0, 1, 1, 0, 1). Let

{k ∈ N : xk = 1} = {n1 < n2 < n3 < . . . }. To prove that sx is not I-convergent, we need to show

that the sequence (an2k+1
)k∈N contains infinitely many zeros and infinitely many ones. This holds

since, for infinitely many even k’s, the indices nk are odd, and for infinitely many odd k’s, the indices

nk are also odd. Ideed, fix k ∈ K. Consider the following four cases.

Case 1. k is even and nk is even. Then k + 2 is even and nk+2 is odd, and k + 5 is odd and nk+5 is

odd.

Case 2. k is even and nk is odd. Then k + 3 is odd and nk+3 is odd.

Case 3. k is odd and nk is even. Then k + 2 is odd and nk+2 is odd, and k + 5 is even and nk+5 is

odd.

Case 4. k is odd and nk is odd. Then k + 3 is even and nk+2 is odd.

Since sx is not I-convergent for every x ∈ E, we have µ(SIc ) = 0.

Note that summable ideals and ideals of the form I〈α〉, α ∈ (0, 1], are analytic P-ideals. An ideal I
on N is called a P-ideal if for any sequence (An) of sets in I there exists A ∈ I such that An \A ∈ Fin

for every n ∈ N. We leave unsolved the problem how to describe the class of analytic P-ideals for

which the equivalence of conditions (i),(ii),(iii) in Theorem 3.2 is true. Recall an important theorem
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of Solecki [18]: I is an analytic P-ideal on N if and only if I = Exh(ϕ) for some lower semicontinuous

submeasure ϕ on N (where Exh(ϕ) := {A ⊂ N : limn ϕ(A \ [1, n]) = 0}).
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