DICHOTOMIES FOR LORENTZ SPACES
SZYMON GLAB, FILIP STROBIN, AND CHAN WOO YANG

ABSTRACT. Assume that LP? LP19  LP»9 are Lorentz spaces. This note is devoted to answering

the question what is the size of the set
E = {(f1,.) fn) ELPVTE x X L™ ¢ fy ... f, € LP7},

We prove the following dichotomy: either £ = LPV'% x ... x LP»% or F is o-porous in L1 x ... X
L, provided ; # - +...+ . In general case we obtain that either £ = LP1*% x ... x LP» or

E' is meager.

1. INTRODUCTION

This article is aimed at studying a size of the set of all tuples (f1,..., fn) from the product of n
Lorentz spaces such that their product fi--- f, is in another Lorentz space. This study is originated

from the paper of Balcerzak and Wachowicz [BW] where it was proved that the set
{(f,9) € L'[0,1] x L'[0,1] : fg € L*[0,1]}

is a meager subset of the product L'[0,1] x L![0,1]. Tt has been generalized by Jachymski [J] who
proved the following condition are equivalent when p > 1 and (X, X, 1) is any o-finite measure space:
(i) {(f,9) € L2(X) x LP(X) : fg € LP(X)} is meager;
(i) {(f,9) € L(X) x IX(X) : fg € TP(X)} £ LP(X) x T(X);
(iii) inf{u(A): u(A) >0} =0.
This result has been further generalized by Glab and Strobin [GS]|. Let (X,X, ) be any measure
space, pi,...,pn,p € (0,00] and min{p1,...,p,} < oo (i.e., at least one of the p;’s is finite). They
proved that the following conditions are equivalent (we define é :=0):
(1) {(f1yeer fn) ELPY(X) X ... x LP?(X) 2 fy -+ f, € LP(X)} is o-a-lower porous for some a > 0;
(i) {(fr,ees fr) €LP(X) x .. X LPn(X) : f1-- fro e LP(X)} # LP(X) X ... x LP(X);
(iii) One of the following conditions holds:
* p% + ..+ p% > % and inf{u(A) : p(A) > 0} =0;
*lyl+ic

and sup{u(4) : p(A4) < oo} = 0.
In this paper we will strengthen the above result. The main idea is that if p € (0, 00|, then LP(X)
is a particular example of the so called Lorentz space. Hence it is interesting if the above result
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can be extended by considering Lorentz spaces instead of LP(X) spaces. Our main reference will be

Grafakos’ monograph [G].

2. NOTATION AND BASIC FACTS

Let X be a metric space. B(x, R) stands for the ball with a radius R centered at a point x. Let
a € (0,1]. We say that M C X is a-lower porous |Z1], if
V(@ M R) o
e it TR 2 g
where

Y(z, M,R) =sup{r > 0:3z € X B(z,r) C B(z, R)\M}.

Clearly, M is a-lower porous iff

VaoeM Ye(0,a) FRo>0 YRe(0,Ro) Fzex B(z, BR) C B(z, R)\M.

The set is o-a-lower porous if it is a countable union of a-lower porous sets. Note that a o-a-lower
porous set is meager, and the notion of o-lower porosity is essentially stronger than that of meagerness.

Note that the sets investigated in this paper will be a-porous in some stronger sense, namely,
VoeX Vge(o,a) VR>0 J:ex B(z, BR) C B(z, R)\M.

However, we do not want to define any new notion of porosity, so in the formulations of theorems we
will deal only with a-lower porosity. For more information on porosity, we refer the reader to survey
papers |Z1]| and |Z2].

Assume that (X, X, 1) is a measure space, and let p,q € (0,00] be such that if p = oo, then also
q = oo. A Lorentz space L?9(X, 3, u) (L7 in short) is the space of all measurable functions (more
formally, of all equivalence classes of measurable functions equal p-a.e.) with a finite quasinorm given
by

(J5° ol s [F@)] > ADEXTIdN) T, it g < oo
17 lpa= § supyoo Aul{e < 1 £ (@) > AD)7, if p < 00 and q = oo;
supess | f|, if p=gqg= .
Note that the presented definition of quasinorm on LP? is equivalent to the original one (cf. |G]) and
that LPY is linear space, but the quasinorm on L9 is not usually a norm since the triangle inequality
does not hold for all quasinorms || - ||,,. However, it is always ¢, ;-subadditive for some ¢, ; > 0.

If p € (0,00], then || - ||, denotes the standard LP-norm:

Jx [fIP dp, if p e (0,1);
- llpi=19q ([x|fIPdu)?, ifpe[l,o0);

supess | ], if p = oo.

B =
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The following basic facts about Lorentz spaces are known and can be easily found in [G]|. In the
sequel we will use them, sometimes without emphasizing it. If (X, 3, ) is a measure space, then
we define ¥ := {4 € X:0 < pu(A) < oo}, and if A € X, then by x4 we denote the characteristic

function of the set A.

Proposition 2.1. Assume that (X, X, u) is a measure space. The following conditions hold:

(i) For any p € (0, 00],

- :{H-Hp if p € [1, ocl;
L) e, ifp e (0,1).

S =

(i) If p € (0,00) and q < ¢’ < oo, then LP1 C L4 . In particular, for every f € LP there exists
M > 0 such that p({z : |f(x)| > A}) < MA™P for every X\ > 0;

(ii) If p,r € (0,50) and q € (0,00], then || |fI" lpg= (| £ lprar)” for every f € LP4;

(iv) If p € (0,00) and g € (0,00], then there exists Dp, > 0 such that for every A € ¥,

1

| XA llpg= Dp,git(A)7.

(v) If LY 4s any Lorentz space, then for every f € LP? and measurable function g, if for every
z € X, |g(x)] < |f()], then g € LP and || g [[p.g<|| [ llp.q;

(vi) If p < 00 and X4 =0, then for every q € (0,00], LP? = {0};

(vil) If LP9 is a Lorentz space, f € LP? and o is any real, then || of ||p.q= |a || f

p.q-

By (i), every L? space is a particular example of Lorentz space.
Assume now that Xy # 0. It is well known, that every Lorentz space LP? is metrizable by some
metric dp 4, which satisfies the following condition (K, 4,7, > 0 are some constants which depend

on p and q):

(1) (H f—yg H;mq)rm < dpﬂ(fa 9) < Kpgq (H f—yg ‘|p7q)rp’q .

Indeed, if p = ¢, then we set dp, ,(f,g) :=|| f — g ||p, and in the other cases we can make use of |G,
Exercises 1.4.3 and 1.1.12].

Since each Lorentz space is quasi-Banach (i.e., every Cauchy sequence with respect to a quasinorm, is
convergent), (1) implies that the metrics d, ; are complete. Hence we can consider LP1 91 x ... x LPrd»

as a complete metric space with the supremum metric dpyax:

dmax((fl; ey fn)7 (gla ey gn)) = max{dphgl (f17 gl)a vy dpnvgn (fTHgn)}

In particular, if p; = ¢;, ¢ = 1, ..., n, then we have:

dmax((flv ~--7fn)7 (917 ~--7gn)) = maX{H fl — g1 ”pN ey H fn — 3n Hpn}'
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3. RESULTS

We will assume that we work with some fixed measure space (X, X, u). Again, we denote ¥ :=
{Ae¥:0< pu(Ah) < oo}

If n € N (we allow n to be 1) and L7, LP-9 .. LP9 are Lorentz spaces, then we define the set

EI(thqh...,pmqn) = {(f1y oy fr) ELPVU x X LP0®: fy oL f e LY,

We also set

(P15--5Pn) .— (P1,P15-PnPn)
Ep = Ep,p

We will first deal with the trivial case: when X4 = () or min{py, ..., pn} = 0.

Proposition 3.1. Letn € N and L7, LPv9 .. LPr be Lorentz spaces. If Xy = () or min{py,...,pp} =

00, then the following conditions are equivalent:

(i) E;[(,{)ql’ql"“’p”’q") is 1-lower porous subset of LPY % x ... x LPnn;

. (P1,q15-++:Pn+qn) , n -
(ii) Epq % LPo@ x ... x LPmin

(iii) u(X) = oo and min{py,...,pp} = 00 and p < co.

Proof. We first show the implication (i)=-(ii). Let fi,...,fn, € L, R > 0 and « € (0, %) For any

1=1,...,n, set
filw) = { filw) + %R i fi(x) 2 0
filx) = 3R, if fi(z) <0.

Then || f — fi [loo= 3R for each i = 1,...,n. Now let ay,...,a, be such that || a; — fi llso< aR,

i =1,...,n. Then for every i = 1,...,n and for p-almost every z € X, we have |a;(x)| > (% —a)R,

a1(2) - - an(z)| > (R (; _ a>>n

The implication (ii)=-(iii) is trivial.

so for p-almost every z € X,

Hence || a1 - - ay, ||pq= o0.

Assume now that p(X) < oo or min{py, ..., pp} < 0o or p < co. Since Xy = @) or min{py, ..., pp} = 00,
one of the following conditions holds:

(al) p(X) =0;

(a2) 0 < p(X) < oo and min{py, ..., pn} = o0;

(a3) min{p1,...,pn} < 0o and X4 = 0;

(ad) p = oo and min{py,...,pp} = oc.

In each case, the equality qul’qlw’pn’qn) = LPL2 x ... x LPm is obvious. Hence we get (iii)=(i). O

Now we will deal with more complicated cases.

In the first result we state the condition, under which E](fql’ql"”’p"’q") = LPoa x ... x LPmin,
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Proposition 3.2. Letn € N and L4 LPv@ | LPv4n be Lorentz spaces, and assume that min{p1, ..., pp} <
oo and X # 0. If one of the following conditions holds:

(a) inf{u(A): A€y} >0 and =+ ..+ = > L

(b) sup{u(A4): A€ X} < o0 and p% + ...+ pin < ;1).

(P1:q15-+-sPn+dqn) — T.P1,q91 Pndn
then Epy X ..o X .

Before we start the proof of Proposition 3.2, we need some lemmas. The first one is an easy

consequence of |G, Exercise 1.1.15] and we skip its proof.

Lemma 3.3. Let n € N and p,p1,...,pn € (0,00] be with p% + ...+ p% = %. Then EIE{’;(;”""”?"’“’) =

LP1:oe x .. x LPn™>°,

Lemma 3.4. Assume that ¥ # (0. The following conditions hold:
(I) If inf{u(A) : A€ X} >0, then every element of any Lorentz space is p-a.e. bounded;
(IT) If sup{u(A) : A € 31} < oo, then there exists A € 34 such that for every p € (0,00)

and q € (0,00], the projection f — fla4 is an isometry between Lorentz spaces LP4(X,3, 1) and
L7 (A, 34, 144)-

Proof. We first show (I). Let L7 be a Lorentz space. If p = g = oo, the thesis holds by the definition
of || - || Hence assume that p < oo and let f € LP9. By Proposition 2.1 (ii), there exists M > 0
such that for every A > 0, we have

p({a: |f(@)] > A}) < MAP,

Hence limy_,o0 pu({x : |f(z)| > A}) = 0, so for some Ao > 0, we get u({x : |f(z)| > Ao}) = 0, which
proves (I).

Now we show (II). Set K := sup{u(A) : A € £.} < co. For every n € N, there is A, € ¥ with
K > p(A,) > K — L1 Set A =J,cy An- Then p(A) = K and for any measurable D C X \ A, we
have that either p(D) = 0 or (D) = oo. Hence if f is an element of any Lorentz space L”(X, X, u),
then p({x € X \ A:|f(z)| > 0}) = 0. This easily gives (II). O

The following lemma seems to be known, but we will give a proof.

Lemma 3.5. Assume that X4 # () and p,p’,q € (0,00]. If one of the following conditions holds:
(i) inf{u(A): A€ B} >0and 5 < ;;
(i) sup{pu(A): A€ X} <ooand0< :t% < %,

then LP % C LP4,

Proof. Assume that (i) holds and let f € LP»*°. By Lemma 3.4 (I), there exists S < oo such that
|f(z)] < S for p-almost x € X. Hence if LP? = L*°, then obviously f € L”9. Thus assume that
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p < 0o. By Proposition 2.1 (ii), we may also assume that ¢ < oc.

Since f € LY, there exists M > 0 such that for every A > 0,
p{z: [f(@)] > A}) < MAT,

and since |f(z)| < S for p-almost x € X, for any A > S we have p({z : |f(z)| > A\}) = 0. Hence
oo S
| e @1 > 23 artin = [ 5@) > AP arlar<
0 0

/S M%/\%q)\q—ldu = /S M%)\q(k%)’ldu < 00,
so f € LP9 and the result 0follovvs. '
Assume now that condition (ii) holds. By Proposition 2.1 (ii), we may assume that ¢ < oo. By
Lemma 3.4 (II), we may assume that K := u(X) < oo. Now let f € L”>*. Then there exists M > 0
such that for every A > 0,
ul{: [f(@)] > A}) < MA7.

Hence we have

/ooomx L f(2)] > A})P ATl =
1 q © q
/0 i ({o s [F(@)] > AP)F AT Ldn + / i ({o: [F@)] > AP)F A1) <
,/ KﬁAqldA+l/ ]WPAI’AqlmL—

/KM“M+/JWV 5) du < oo,

so f e LY.

We are ready to give a proof of Proposition 3.2

Proof. (of Proposition 3.2) Let p’ € (0,00) be such that p% + ...+ i = }%, and let (f1,...,fn) €
LPoat x .. x LP»4 . By Proposition 2.1 (ii), (f1, ..., fn) € LP»* X ... x LP»* and by Lemma 3.3, we

get fi1---fn € L?>°. Hence and by Lemma 3.5, f1--- fn € LPY) so the result follows. O

(pl’ql’ sProdn) o emall. Recall that we consider the

The next theorem deals with the case when Ej
product of Lorentz spaces as a metric space with a metric dy.x defined in the previous section, and in

the case of LP' x ... x LP" | we have dmax((f1, .-, fn)s (915, 9n)) = max{|| fi—g1 llprs--s || fn—9n llp.}

Theorem 3.6. Letn € N and LP9, LPv% . LPv9 be Lorentz spaces. Assume that min{py,...,pn} <
oo and X4 # 0. If one of the following conditions holds

(1) p% +..+ pin > 11) and inf{pu(A): Ae ¥} =0;

(ii) p% +..+ p% < = and sup{p(4) : A€ ¥} =00

[=

p
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then the set E,(,f)(}’m """ ) s o-a-lower porous in LPVI x .. x LPvi for some o > 0.

If additionally ¢ = p and q; = p; for i =1,...,n, then we can take o = where m is the number

2
m—+1’
of i's for which p; < 0.

Note that the last statement of the above result, together with part (i) of Proposition 3.1, give the

thesis of the main result of [GS] (|GS, Theorem 6]). Before we prove the result, we will present some

lemmas. Note that they are refinements of [GS, Lemmas 4 and 5.

Lemma 3.7. Let n € N, A, Ay, ..., A, be measurable sets and si,...,s, > 0 be such that Y ;. ; s; < 1.
If A; C A and pu(4;) > (1 —s;)pu(A) for any i =1,...,n, then

’ (m> -0

Proof. Using the induction principle, it is easy to show that
k k
I (ﬂ Ai> > (1 — ZSZ> u(A) forany k=1,...,n.
i=1 i=1
In particular, for k = n, we get that u(();—, 4i) > 0. O
Recall (cf. Proposition 2.1 (iv)) that if ¢ € (0,00] and p < oo, then for some D), 4 > 0, || x4 ||pg=
Dp7q,u(A)% for every A € X

Lemma 3.8. Assume that n € N, p1,...pn € (0,00), q1,...,qn € (0,00] and let A € Xy. If
fi, s fry 915 ooy gn are such that |gi(x)] > 1 forx € A andi=1,...n, and || (fi — 9i)XxA llpi.g: < Sis

1=1,...,n for some s1, ..., Sn, then
n S; pi\ ¢
| fioe faXa I > DpC” (M(A) > (5—=5) )
for any C € (0,1), p € (0,00) and g € (0,00], provided that pu(A) > 31", (WY’L

Proof. For simplicity, let D, Dy, ..., D,, stand for D}, 4, Dy, 4, ---, Dp, 4., respectively. For i =1,...,n,
we define the sets A; := {x € A : |fi(z)| < Clgi(z)|}. Now let i = 1,...n. Then for every x € A;,

|fi(z) = gi(w)| > |gi(z)| — [ fi(x)| = (1 = C)|gi(z)] > 1 - C.

Hence
1

si 2|l (fi = gi)xa llpia: [l (1= C)xa; [lpigs= Di(1 = C)p(Ai) i,

and therefore

) 3; Pi
)< | ———— .

) = (Di(l - C))

By combining this with the fact that for any z € A\ A;, |fi(z)| > C, we obtain

| f1--- faxa

‘anH Ji-- anA\U{”:1 A, ‘|p7q2|| CnXA\U’f:1 A; ‘nqz
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Ioted (u(A) - Zu(Az»)) "> per (M(A) -y (D(f_c))p) "

n
=1

The following lemma is crucial for the proof of Theorem 3.6. If u > 0, then we set

2) Eu = {(f1, s fn) € TP 5 X LPo0 || fy oo for o< ul.

If f € LP? and r > 0, then we denote By 4(f,7) :=={g € LPY:|| f — g |pg< T}

Lemma 3.9. Let n € N and LP4 LPLD  LP»9% be Lorentz spaces and let the assumptions of
Theorem 3.6 be satisfied. Assume that for some m > 1 and k > 0 with m + k = n, we have

Ply ooy P < 00 aNA Pyl = oo = Pk = 00. Let r; € (0,00) and §; € (0, %), 1=1,...,n, be such that

Pq

0 7
<1_15i) <1 and rpp1=...=rp=1.

NE

i=1
For every uw >0, R > 0 and (f1,..., fn) € LPL8 x ... x LPmn | there exists (fl, ,fn) € LPrva x ... x
LPrdn sych that
~ T
(H fi—fi ||pi,qi> =(1—-6)R foreveryi=1,..,n,

and
. a1 - 1
Byray (Fi, (GiR)TT) % oo X By, (oo (GuR)7 ) N By = 0.
Proof. For simplicity, we will write || - ||; and D; instead of || - ||, 4 and Dy, 4, for i = 1,...,n,
respectively, and || - || and D instead of || - ||, and D, 4, respectively.

Let u > 0. As we assumed, p; < oo for i = 1,...,m and p; = oo for i = m + 1,...,m + k, for some
m>1and k>0 with m+ k =n.
Let (f1,.e, fn, g1, s i) € LPVI X o x LP»9 0 R > 0. We can choose C € (0, 1) such that

(3) g<<1§5i)é(1_10)>pi<1.

Now set:

I (RO = 6))
¢= Hl’il D; ’

(5) = (1_§;<<1f¢5i>é(1_10)>m>?_

By our assumptions ((i) or (ii)), there is a set A € ¥ such that

(4)

if p < 0o, then

(6) < f[ R(1—25i)> GDC'mH,u,(A)(;’ pr Pm) >

i=m-+1
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and if p = oo, then

n
(7) ( 1 rO- 252-)) Gemu Ay Grttam) > .
i=m+1
Note that in the case when % — 1%1 — = Ii < 0, we take the set A with an appropriate small positive
measure and in the case when % — p% — .= Ii > 0, we take the set A with an appropriate large finite
measure.

Next, let My, ..., M, be such that for i =1,...,m,
(8) (I Mixa i)™ = (1 = &) R.

Then for every i = 1,...,m,

©) u(4) = (W) .

Now, let us define fi, ..., fm, 1, ..., i as follows.
Fori=1,...,m, we set

fi(z)+ M;, x€ Aand fi(z)>0;
filx) =19 fi(x)—M;, z€ Aand fi(z) <O0;
fi(z), x ¢ A,

and for i =1, ..., k, we set

gi(x) = { gil@) + (1 = Omsi) B, it gi(w) 2 0;
Z 9i(x) — (1 = dmyi) R, if gi(z) <O.

Using (8), we obtain for every ¢ =1, ..., m:
(1 7= 7 0)"™ = (1 Mixa 7 2 (1= 6)R
and similarly for every i = 1,...,k (recall that r; =1 for i =m+1,...,n),
19 = gilli = (1 = Omyi) R.

Now let
1

(@1, ey @m, b1, ...,bk) € By g (fl, (01R) 1) X .. X By, a0 (gk, (5n3)$) .

Clearly, since for every i = 1,....,k and = € X, |g;(z)| > (1 — §+i) R, then for p-almost every x € X,
(10) ()] > (1= 2ms) R

Consider two cases:

Case 1. p < co. For any i = 1,...,m, we have

(1) @R 2 ai = i i || (0= 7) xal |, = M2

a fi
M, M, XA

i .

(]
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and also, by (9),

®s) s \E 1\
12 (MiDia—c)) "“‘“”((1—@) <1—0>>
and
(13) Myu(A)# Dy = (1= 6;)R)

Hence, by (4) - (6), (10) — (13) and Lemma 3.8 (used for ¢; := ]\Ji}i, fi =1} and s; := (GiR)": ), we

obtain the following

(10)
H al”'am‘bl"'bk Hz” al"'am'bl"’bk‘XA ”2

( 11 R(1—25i)> | a1 amxa =

i=m-+1
- a1 am L 3.8,(11)
_ ) e - . >
(A II Rra 25») My My || g ixal | 2
i=m-+1
— 20 m _ _ Wy (12)
<‘ II ra 2&)) M, --- M, DC (M(A) Z (MiDi(l - C)) )
i=m-+1 i=1
<‘ 1T R(1—25i)> M - M,,DC (u(A) _Z“(A) ((1 _5i> q _O)> ) )
i=m-+1 i=1
n m AL (A D
i=m+1 Hi:l Dz
- (l_i_m_L) (6)
[T ra-206)|GDC™ (AP 5™ o) H > .
1=m+1

Hence (a1, ...,b;) ¢ E,.
Case 2. p = oo. This case is possible only if inf{u(F) : E € ¥4} = 0. For any i = 1, ..., m, we define:

Al ={zx € A:|ai(z)| > CM;}, A?:= A\ AL
Then for every i = 1,...,m, we have

(&-R)%i > a; — fi [li> H(ai - fz) X A2

1
2N M1 = C))x gz [li= DiMi(1 — O)u(A7)7i.

Hence by (12) (which works in this case), for every i = 1,...,m,

u(A2) < <DM<1_C>> L u<A><(1_5i) (1_0)) .

Then for each ¢ =1, ..., m,

n(AD) = p(A) = p(4?) > p(A) (1 - <<1 fa) <1—10>> ) |
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By Lemma 3.7 and (3), we obtain that 1 (A} N ... N A},) > 0. Also, for p-almost every z € AlN...NAL,
we make use of (4), (7), (10) and (13) (which, clearly, works in this case) to obtain

lay(z) -+ am(x) - by(x) - - - by ()] (g) C™M; - - M,, < ﬁ R(1— 25i)> (4),(13)

i=m+1

. (L 1 7

= ( IT ra —25@-)> C"Gu(A) Grtetam) O
t=m-+1

Hence

This ends the proof. U
We are ready to give a proof of Theorem 3.6

Proof. (of Theorem 3.6) For simplicity, we will write || - ||; and d;, i = 1,...,n instead of || - ||, 4 and
dp,.q;» © = 1, ...,n, respectively.

By (1), for each i = 1,...,n, there exist K;,r; > 0 such that for every f,g € LPi-%

(14) W f=gl)™ <di(f,9) < Ki([l f =g lla)",

and if p; = oo, then K; =r; = 1.

Since E]g{’(}’ql"“’p”’q") = Uyen Bu (where each E, is defined as in (2)), we have to show that there
exists a > 0 such that for each u > 0, the set E, is a-lower porous.

Let w > 0. Without loss of generality, we assume that p; < oo for ¢ = 1,...,m and p; = oo for
t=m+1,...m+k where m+k=n,m>1and k> 0.

Now let K := max{Kj,..., K;} and A > 0 be such that

™A N\
;(1—)\> =1

It is easy to see that A < 1. Take 6 € (0, \). Then
m Pq
b \
— 1.
2 <1 - 5> <
i=1
Now take (f1,..., fn) € LPL% x ... x LP»% and R > 0. Let <f1, ,fn> € LP1@ x ... x LPv% be as in
Lemma 3.9, chosen for ry,...,7, u, (f1,.., fn), R := % and 0; :==0,i1=1,...,n.
By (14) and Lemma 3.9, for every i = 1,...,n, we have that
(14
<

4 (5. ) 'S K (15 )" KO- OR = (- 9k,
SO

(15) By <(f1fn) i?) C By ((flfn) ,5R) C By ((f1, o o), R)
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where By((+,...,"),) denotes an open ball in (LPL% x ... x LPm9 d o).

On the other hand, by (14), for any ¢ = 1,...,n and any a; € LP>% if d; (fi,ai> < %R, then also

(H fi—ai HZ)” < 8 = §R’. Hence and by Lemma 3.9, (a1, ...,a,) ¢ E,, which shows that

(16) Bd((fla- 7};”),5]-'{) N Ey

By (15) and (16), E, is 22-lower porous.

0.

Now we will prove the last statement of the thesis. We may assume that p1,...,p; <1, pjy1,...,pm €

[1,00) and py41 = ... = pp, = 00. Fori =1,...,4, set r; := p;, and for i = j+1,...,n, set r; := 1. Now
if A= +1’ then f)\ = %, SO
m Py m
A 7 1
E < g — = 1.
; (1—/\> T —~m
=1 =1
o1

Proceeding similarly as above we get that each E, is =™-lower porous (note that here K =1). 0O

Finally, Propositions 3.1, 3.2 and Theorem 3.6 imply the following partial dichotomy:

Corollary 3.10. Let n € N and LP2 LPV9 . LP»9 be Lorentz spaces such that if p < oo, then
% #* p% + ...+ Fln' Then the following conditions are equivalent:
(a) the set E(pl’ql’“"p"’q") is o-a-lower porous in LPV9 x ... x LPm for some o > 0;
(b) E. pl’ql’ #Pradn) # LPr@ x .. x LPnotn
(c) one of the conditions holds:
(i) Sy # 0 and inf{u(A): A€ L1} =0 and = + .. +pi>}o
(ii) Xy # 0 and sup{u(A): A€ X} =00 and St <
(iii) u(X) = o0 and min{py,...,pn} = 00 and p < cc.

1.
p’

Proof. Implication (a)=-(b) is trivial. Implication (c)=-(a) follows from Proposition 3.1 and Theorem
3.6. We will prove implication (b)=-(c). Assume that (i), (ii) and (iii) do not hold. Consider two
cases:

Case 1. ¥4 = () or min{py, ..., pp} = 0.

Then the equality E]g{’(}’ql"“’p"’q") = LPr2 x ... x LP follows from negation of (iii) and Proposition
3.1.

Case 2. ¥4 # () and min{py, ...,p,} < 00.

Then the negation of (i) and (ii) easily imply the assumptions of Proposition 3.2.

The result follows. 0
Now we will deal with the case when p% + .+ i = % and min{py, ..., pp} < 0.
Proposition 3.11. Assume that R e % Then the following conditions hold:

i) for qi,...,qn € (0,00], E(”ggq“ ’p”’q”) = LPra x ., x LPnn,;
p7
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(11) fOT every q; € (07p7j7 = 17 cees T and qc [p7 OO], Ez()ﬁ]l"h ..... Pnsdn) =L, x . x LPvn,

Proof. Part (i) follows from Lemma 3.3 and Proposition 2.1 (ii).
Part (ii) follows from a general version of the Hélder inequality |G, Exercise 1.1.2] and Proposition
2.1 (ii). O

Now we show that we can also have E;?;’ql""’p"’q") # LPra x ... x LPmin,

Proposition 3.12. Let X = R¥ and u be the Lebesque measure on X, p' < 0o, p = %l, q € (0,00]
and q < %" Then Eg{;,q’,...,p’,q’) ”] LY« x P

Proof. Let t = %/. By [G, Exercise 1.4.8], there is f € LP' \ LP4. Clearly, we may assume that

1

f = 0. By Proposition 2.1, f% e Lrtn — 1P Hence ( E,...,f%) e LP x ... x LP¢ and
f%...f%:fngvq. .

Now we show that the following dichotomy holds:

Theorem 3.13. Let n € N and LP4, LPH% | LP»9 e Lorentz spaces with p% + ...+ pin = %. Then

the following conditions are equivalent:

(i) E}g{”ql’th'"»anqn) £ LPLO x . x LPnn,

(ii) E]S{’ql’%'"’p'“q") is a meager subset of LP14 x ... x LPrdn.

To prove the above fact, we need the following lemma. If LP¢ LPv2 . LPw9 are Lorentz spaces

such that p, ¢ < oo, then for every reals v,u > 0, we put

(17) E; = {(fl, ooy fn) € LPVB o LPmIn /00 p({x | fi(x) - fulx)] > v)\})%/\q_ld)\ < u}
0

Lemma 3.14. Letn € N and LP4 LPv@ | LPvn be Lorentz spaces such that q,p,p1,...,pn € (0,00).
If (hi,...,;hy) € LPLO x . x LPr9 4s such that hy -+ - hy, ¢ LPY, then for every u,v > 0, there exists
r > 0 such that

By, g (h1,7) X ... X By, g, (hn,7) 0 By = 0.

Proof. Let (hi,...,hy) € LPY% x ... x LPm be such that hy - - - hy, ¢ LP9. In particular, hlwinhn ¢ LP,

SO

(18) / {2 2 1P () - - hn(@)] > v2"A}) FAT A = oo,
0

Now for every k € N, set

1
Ay = {$€X:k> |hi(x)] > 7 izl,...,n}.
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Since for every i = 1,...,n, p; < oo, we have that ;1(Ay) < oo for every k € N. Now let A := | J o Ak
Then A = {z € X : 00 > |hi(x)---hp(x)] > 0}, so by (18) and a fact that for each i = 1,...,n,
p{x € X :|hi(z)| = 0o} = 0, we get

o
/ p({z € At |hi(z) - hp(x)] > v2"A}) P AL dA = oo.
0
Hence by the Lebesgue monotone convergence theorem, there exists k£ > 0 such that
(19) / uw{x € At |hi(z) - - hyp(z)| > UQ”)\})%X]*I d\ > u.
0

Define
so :=1inf{\ > 0: u({z € A : |h1(z) - - hp(z)| > v2"A}) = 0}.

By (19), we get sp > 0, and since for A > 15‘32—7; we have p({z € A : |hi(x) - hyp(x)] > v2"A}) = 0, we

also have sy < co. Moreover, again by (19), we obtain

/080 p{x € Ak« |hi(z) - - - hp(z)| > 1}2”)\})%)\(]7161)\ > u,
therefore for some s € (0, sg),

/OS p{z € Ay |h(x) - - - hy(z)| > UQ")\})%)\qfld)\ > u.

By the definition of sg, we have p({x € Ag : |hi(x)---hp(z)] > v2"s}) > 0. Hence and by the
Lebesgue monotone convergence theorem, there exists m > 0 such that for every A € (0,s], u({z €

Ap i |h(2) - hy(z)] > v2"A}) > L and

)

(20) / S (u({x € Ay Ih(@)- ()] > v2"A}) — ;) VRPN

Now set r > 0 such that

(21) Zn: G;f)p < %,

=1

where D; := D), 4., 1 = 1,...,n. Now let (a1, ..., an) € LPL9 x ... xLP»9 be such that || hi—a; ||p,,q; < T

for every i = 1,...,n. For every i = 1,...,n, put

, 1
(22) At = {x € Ay ¢ ai(x)] < 2|hi(:c)|}.
Then for every i = 1,...,n, we have
1 1 L
r> H hi — a; sz',qz‘ = §hiXAi > %DiN(A )pia
Pirdi

so for every ¢ = 1,...,n, we have

(23 it < (3E)"
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Hence, by (21) — (23), for every A > 0, we get

W({r € X :ar(@) - an(a)] > vA}) > ({ e a\ [J A (@) - an()] > A}) @

=1

no (21),(23) 1

o ar:EAk\LJAZ s|ha(z) - hp(z)] > 02" A > pu({z € Ag:|h(x) - hp(2)] >112”/\})—E.
i=1

Therefore by (20),

/Ooo p({x € X :|a(x) - an(z)| > v)\})%)\qfld)\ >

(20)
> u,

/8 (;L({x € At (@) ()| > v2"A}) — 1) " 1)
0 m
so (a1, ...,an) ¢ E.. O

Proof. (Theorem 3.13) We only have to prove implication (i)=-(ii). Hence assume (i). By Proposition

3.11 (i), we can assume that
min{pi,...,pn} < oo and p,q < oco.

Moreover, without loss of generality, we can assume that py, ..., pm < 00 and pm41 = ... = Pypk = X
for some m > 1 and k > 0 with m + k =n.

Now take (hy,...,h,) € LPY@ x .. x LPm% with hy---h, ¢ LP?. Since hyi1, ..., hn € L, we get
hi---hy, ¢ LPA,

For any v,u > 0, let EY be defined as in (17). Clearly, we have E[(,f)(}’ql“"p”’q") = Uyen Es, so we only
have to show that for every u > 0, the set E} is nowhere dense.

Let d;, K;,ri, i =1,...,nbe asin (14). Set u > 0 and let (f1, ..., fim, g1, ---, g) € LPVA x ... x LPm:m x
L* x ... x L* and R > 0. Now take rg > 0 such that for every ¢ = 1,...,m,

1
Define for every i = 1, ..., m,
- fitx) + mre—1hi(z)],  fi(z) = 0;
fz(l‘) — 4 ) ||h1ﬂpi7qi’ z( ’ Z( )
fi(@) = mnrhi(@)] - filz) <0,
and fori =1,..., k,
Gi(z) = gi(x) + &, gi(x) >0
(2 A
gi(z) = 5, gi(x) <0.
Then, clearly, for each i = 1,...,m, || fi = fi llp.q;= 70, and for each i = 1, ...k, || G — i ||pr.qi=
In particular, by (14) and (24), for every i = 1,...,m, d; <f’i,fi) < %R, and for each i = 1,...,

Anti (Giy gi) < %R. Hence

(25) Bd ((fl) "'>f;n7§17 7§k> 7;R> C Bd ((fb "')fmaglv 7gk) 7R)

R
£
k,
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Since for every i = 1,...,m and every z € X, |f;(z)| > Mﬁ’hl(wﬂv we get that fi--- f & LPY.
Now let [ > 0 be as in the thesis of Lemma 3.14, chosen for <f1, e fm>, u and v = (%)k. Clearly,

we may assume that

(26) Kl <

DN |

Let
(al,...,am,bl,...,bk) pl Q1 (fl, ) . Bpn,qn(glﬁl)

Then for p-almost all z € X,

1 k k
b1 () - by ()] > (23—1> > (f) .
Hence and by Lemma 3.14,

/0°° p({z a1 (@) am(@)by (x) - b()] > A} P AT dA >

/OOOM ({x Hay(x) - am(z)] > (é)k)\}>g)\q 1 d)‘L3>14u

5O (@1, ..., Gm, b1, ..., bg) ¢ E}. Hence
(27) By (f17 ) oo X By, 4, (g, 1) N E, =0.

Moreover, by (14) and (26), for every i = 1,...,m, d; <al,f1> % and for every ¢ = 1,...,k,
d; (bz,gz) < %R Hence

B (fl,z) X .. B (fm,z> % B(g1,1) % ... x B(gi,1) C Ba <(f1, s ...,gk> ,;}2)

Since each open "ball" with respect to quasinorm has a nonempty interior (this follows from (14)),

the above together with (25) and (27), show that E} is nowhere dense. O

Problem 3.15. It would be interesting to find the necessary and sufficient condition, under which

E;,(,p;’ql"“’p"’q”) # LPr@ x ... x LPv% in the case when = + ...+ L =1,
s p1 Pn p
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