ON THE SET OF LIMIT POINTS OF CONDITIONALLY CONVERGENT SERIES

SZYMON GLAB AND JACEK MARCHWICKI

ABSTRACT. Let 3->° | & be a conditionally convergent series in a Banach space and let 7 be a permutation
of natural numbers. We study the set LIM(3-5% 1 2. (5,)) of all limit points of a sequence (3% _; Tr(n))peq Of
partial sums of a rearranged series > oo | Tr(n)- We give full characterization of limit sets in finite dimensional
spaces. Namely, a limit set in R™ is either compact and connected or it is closed and all its connected
components are unbounded. On the other hand each set of one of these types is a limit set of some rearranged
conditionally convergent series. Moreover, this characterization does not hold in infinite dimensional spaces.
We show that if > 07 ; «,, has the Rearrangement Property and A is a closed subset of the closure of
the >°°° , xn sum range and it is e-chainable for every € > 0, then there is a permutation 7 such that
A=LIM 0, xT(TL)). As a byproduct of this observation we obtain that series having the Rearrangement

Property have closed sum ranges.

1. INTRODUCTION

Let 77 | z,, be a conditionally convergent series on the real line R. For any a < b one can find a permutation
0 € S of natural numbers such that the sequence (Zszl :cg(n))iil of partial sums of the rearrangement
> To(n) oscillates between a and b. Consequently, a and b are limit points of a sequence of rearranged
partial sums (22:1 xg(n)):;l. Since |z4(n)| tends to zero, the whole interval [a, b] consists of limit points of
(22:1 xv(ﬂ))/iir This simple observation shows that the set of all limit points of a sequence of rearranged
partial sums (Zszl :vg(n));il is closed and connected, and for any close connected subset I of real line and
any conditionally convergent series > ° | x,, one can find a rearrangement » T4(n)y such that the set of all
limit points of its partial sums equals I. If the rearranged series » - | Tg(n) converges to co or to —oo, then
the set of all its limit points is empty.

The situation becomes more complicated if limit sets of rearrangements of conditionally convergent series are
considered in multidimensional Euclidean spaces. One could expect that such limit sets would be connected or
even arcwise connected. It turns out that this is not the case. However, some result concerning connectedness
can be proved for multidimensional spaces, see Theorem 3.5.

Now, let fo:l z, be a conditionally convergent series in the Euclidean space R™. By Steinitz Theorem
the sum range SR(3,"; @n) = {1 To(n) : 0 € Soc} of Y07 | @y, where S, is a symmetric group of all
permutation of natural numbers, is an affine subspace of R". Denote by LIM(}_° Ty(ny) the set of all limit
20:1' Such limit sets were studied by Victor Klee
in [3], where the author claimed that if A is a limit set LIM(}_7" | 5 (n)), then for every ¢ > 0 an e-shell

points of a sequence of rearranged partial sums (22:1 x(,(n))

A(e) ={x: ||z —y| < e for some y € A} of A is connected. Our Example 2.2 shows that this claim is not true.
Note that connectedness of A(e) means that any two points a,b € A can be joined by a path xg,z1,...,2p € A
such that o = a, 2 = b and ||z; — z;—1|| < &, and if A has this property, then we say that A is e-chainable.
Klee also proved that if A C SR(}.,~ ; ,,) is closed and e-chainable for every € > 0, then there is 0 € S such
that A =LIM(3_," | o (n))-
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In this article we complete the Klee’s result by giving the full characterization of limit sets LIM(> "7 To(n))
in Euclidean spaces. Namely we prove the following dichotomy (Theorem 3.5): the limit set is either compact
and connected or any its component is unbounded; moreover, the closure of the limit set in the one-point
compactification of R™ is connected. The proof uses the fact that underlying space has a finite dimension.
Moreover, this dichotomy does not hold for all Banach spaces. More precisely, we construct an example of a
conditionally convergent series in ¢ such that the limit set of some of its rearrangement consists of two points.

Theorem 3.5 cannot be reversed in the sense that there is an unbounded, closed set in the one-dimensional
Euclidean space R whose every component is unbounded but it cannot be a limit set. Namely, consider the
union X := (—oo0, —1] U[1, 00) of two unbounded connected sets. As we have mentioned in the beginning, any
limit set on the real line must be connected, and therefore X is not a limit set. However, Theorem 3.5 can be
reversed in higher dimensions. This means that any compact connected set (or even any closed e-chainable set
for every € > 0) in R™, m > 1, and any closed set in R™, m > 2, whose every component is unbounded are
limit sets of some rearrangement of a conditionally convergent series.

In the last Section we show that if > ° , z, has the Rearrangement Property and A C m is
closed and e-chainable for every € > 0, then there is 7 € Sy such that A = LIM(Y -, Tr(n)). As a byproduct

of this observation we obtain that series having the Rearrangement Property have closed sum ranges.

2. COUNTEREXAMPLE FOR KLEE’S CLAIM

As we have mentioned in the Introduction, Victor Klee in [3] claimed that if A = LIM(} )| Z4(s)), then
its e-shell A(e) = {z : ||z — y|| < & for some y € A} is connected for every e > 0. It is equivalent to saying that
A is e-chainable for every ¢ > 0. The author used quite a different notation than the one used by us, but the
gap in his argument can be translated into our language as follows. Klee argued that LIM(ZZO=1 Ty (n)) CANNOt
intersect two sets X and Y having disjoint e-shells X (¢) and Y (¢); it is supposed to be ”"evident”. However,
the following example shows that this is simply not true.

For natural numbers n < m by [n,m] we denote discrete interval {n,n + 1,n + 2,...,m} and by [n, o)
we denote the set {n,n+1,...}. Let .7y, be a conditionally convergent series and let > -, z, be its
rearrangement, that is there is 0 € Soo with 2, = y5(,). A partial sums sequence (sy,), s, = 22:1 xy, will be
called a walk. Note that a € LIM(>_ ", z,) if for every € > 0 the walk (s,,) hits the ball B(a,¢). If (s,,)52

n=1 is

a sequence in R, then we call it a walk, if some rearrangement of a series Zzo:l(snﬂ — 8y) is convergent.
A sequence (s;,) of elements of set X is called an X-walk if

(i) the set {s, : n € N} is dense in X

(ii) there are positive integers ni,na, ... such that s,,1; = sp,—; for i € [1,n1 — 1] and

SZ?:l 2nj—14ngr1—i SZ§:1 2nj—14ngy1+i
for k>0 and i € [1, nj1];
(111) ||5n+1 - Sn“ — 0.

Proposition 2.1. Suppose that (sy) is an X-walk. Then there is a conditionally convergent series Y - | Tn

and a permutation o € Ss such that s, = ;_; To(ky. Moreover, LIM(Y 2, To(ry) = X.

Proof. Note that S5k on;—1 = 51 for every k. That means that the X-walk (s,) gets from s; to s,, and back,
using the same points, to s2,, 1 = s1, then it walks to Sso,, —14n, and back to sap, 12n,—1 = 51, and so on. We
define y,, = $p41 — Sn- Let p = 2?21 2n; —1+ng —iand m = Z?Zl 2n; — 1+ ng41 +i. Then yp = —ypm—1.
Thus the series > | y, can be rearranged into an alternating series > -, x,,, which by (iii) is convergent.
Since each element of (sy) is in a closed set X, then LIM(} .~ 2,)) € X. The opposite inclusion follows
from (i). O
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Example 2.2. At first we define elements y,, of a conditionally convergent series Y -, v, C R%. The sequence
(yn) will be alternating, that is ya, = —y2,—1 for n > 1. Therefore we will define only the terms y,, with an
odd index n.

Step 1. First two odd y,,s are (3,0), (3,0).
Step 2. We define next 1-4 + 4+ 1-4 odd elements: (0,%),...,(0,1),(3,0),...,(5,0),(0,—1),...,(0,—1).
Step k+1. In this step we define k - 2871 4+ 2541 4 k. 2641 clements

1 1 1 1 1 1
(Oaﬁ)a“-a( aﬁ)a(ﬁv )""’(W’O)’(O’_W)"”’(0’_W)'
k.2k+1 2k+1 k-2k+1
Since (yp) is alternating and lim,_,~ ||y, | = 0, the series > 7 |y, is convergent. Now we define our walk,

that is a rearrangement of >~ | y,, as follows. First two 21 and x5 are the elements of (y,,) defined in Step 1
with odd indexes, x3, x4 are corresponding elements of (y,,) with even indexes. Next 1-4+4+41-4 of a] s are
elements of (y,) defined in Step 2 with odd indexes (in the same order we have defined them above) and the
next 1-44+4+1-4 of z/ s are corresponding elements of (y,,) with even indexes taken with reversed order, and
so on. On Figure 1 we present a sequence of partial sums given for x,’s defined in the first three steps of the
construction. Note that LIM(D 7 ; z,,) = {0,1} x [0,00). Thus the set of limit points of the series Y - | x

has no connected e-shell for ¢ < %

Example 2.3. Now we describe a construction in which the limit points of the series are the closure of set
of infinitely many pairwise disjoint half-lines {a,, : n € N} x [0,00) where (a,) is a sequence of distinct real
numbers. This example is similar to Example 2.2, so we prescribe only the walk (s,,). Since in each step of the
construction the walk goes from one point to another and then back through the same path, the steps of the
walk can be rearranged to an alternating series. Since the lengths of the walk’s steps tend to zero, the obtained
series is convergent. We describe the first three steps of the construction:
Step 1. We start the walk at (aq,0). Then we move to (az,0) along the line y = 0 using steps of length not
greater than 1. Then we go back to (a1, 0) via the same path.
Step 2. We go upward to (a1,1), then along the line y = 1 to (ae, 1), next downward to (az,0) and back
upward to (az, 1), then again along y = 1 to (a3, 1) and downward to (as3,0) in each part using steps of length
not greater than % Finally we go back to (a1,0) using the same path.
Step 3. In this step first four points (a1,0), ..., (a4,0) are involved, steps are not greater than i and to move
between vertical lines x = a; we use a horizontal line y = 2, etc.

Clearly LIM(>"77 | #,,) 2 {an, : n € N} x[0, 00). Since LIM(>>° | z,,) is closed, we obtain LIM(}_07 | x,,) 2
{an :n €N} x [0,00) = {a, : n € N} x [0, 00). To show the inverse inclusion let (u,v) ¢ {a, : n € N} x [0, 00).

If v < 0 then (u,v) ¢ LIM(>_77, z,,), because our walk is in R? and has a non-negative second coordinate. If
v >0 and u ¢ {a, : n € N} then inf,cy|u — a,| = 6 > 0. Fix a natural number m > v + §. Then the ball
B((u,v),d) does not contain elements of our walk defined in k-th step of construction for any k > m. Hence
(u,v) ¢ LIM(>"77 | ). Finally LIM(Y"0° | ) = {a, : n € N} x [0, 00).

Using Example 2.3 we can show that the limit set of a rearrangement of a conditionally convergent series
can have uncountably many unbounded components. Let E = {aj,as,...} be a countable dense subset of

the ternary Cantor set C. By Example 2.3 one can find a conditionally convergent series 270;1 T, and a

rearrangement o such that LIM(3 ) | 2o(n)) = {an}22, x [0,00) = C x [0,00). Since the ternary Cantor
set C is totally disconnected, i.e. each its component is a singleton, half-lines {z} x [0,00), x € C, are the

components of C' x [0, c0).
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FIGURE 1. The first three steps of the construction of the walk (3>°" | ,,)_; from Example 2.2.

3. CHARACTERIZATION OF LIMIT SETS LIM(} " | 24 ()) IN THE EUCLIDEAN SPACES

Let B(0,R) = {v € R™ : |jv]| < R} and let S(0,R) = {v € R™ : ||v| = R}. For a topological space X by
K(X) we denote the set of all non-empty compact subsets of X equipped with the Vietoris topology, for details
see for example [4, p. 66]. It is well-known that the compactness (metrizability, separability) of X implies the
compactness (metrizability, separability) of the hyperspace K(X) and that the family of all nonempty compact

connected subsets of X forms a closed subset of IC(X).
Lemma 3.1. Let X CR™ be a closed set and let R > 0. Then

7 = U{C’ : C is a component of X N B(0, R) such that C N S(0, R) # 0}
18 a compact subset of R™.

Proof. Let (v,) C Z. Find components C,, of X N B(0, R) such that C,, N S(0,R) # § and v, € C,. Pick
xn € C, N S(0,R). Since K(X N B(0, R)) is compact, we may assume that C,, tends to some C, v,, — v and
Zn, — x. Then v,z € C and C is connected. Therefore v and x are in the same component of X N B(0, R)

which has a non-empty intersection with the sphere S(0, R). Thus v € Z, and consequently Z is compact. [
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Let X C R™ be a closed set. We define an equivalence relation £ on X as follows
xFy <= z and y belong to the same component of X.

By X/E we denote the set of all equivalence classes of E and by ¢ we denote the mapping from X to X/FE
assigning to a point z € X the equivalence class [z]g € X/E. On X/FE we consider the so-called quotient
topology conmsisting of those U C X/E such that ¢~ *(U) is open in X. The set X/E equipped with this
topology is called the quotient space, and ¢ : X — X/FE is called the natural quotient mapping. The following

result important for us can be found in [1].
Theorem 3.2. For every compact space X, the quotient space X/E is compact and zero-dimensional.

For X CR™ and € > 0 put X(¢) :={y € R™: ||l — y|| < e for some z € X}. We will called it an e-shell or
an e-neighborhood of X.

Lemma 3.3. Let > 2 x, be a conditionally convergent series in R™ and let 0 € So. Assume that Y is
a nonempty bounded subset of X := LIM(D_ )" @o(n)). If Y(e) is disjoint with X \'Y for some ¢ > 0, then
X=Y.

Proof. Note that the closure Z of Y(e) \ Y(¢/2) is a compact set disjoint with X. Suppose that X \ Y #
(). Consider a set A := {22:1 To(n) : k € N} N Z of those partial sums of Y | ,(,) which meet Z.
Since all elements of the nonempty sets ¥ and X \ Y are limit points of a rearranged partial sums sequence
{ZZ:1 To(n) }oey, then the elements of that sequence walk from Y to X \ Y and back infinitely many times.
Since the lengths of steps ||z4(n)| taken during this walk tend to zero, the set A is infinite. By compactness
of Z we obtain that A has a limit point, which in turn is in Z, but this contradicts the fact that Z N X = (.
Thus X \ Y = 0 and consequently X =Y. O

By a(R™) denote the one-point compactification of R, that is to the underlying set R™ we add a point co.
Neighborhood base at each x € R™ consists of open ball centered in x and neighborhood base at oo consists
of all sets of the form (R™ \ C') U {oo} where C' is compact in R™. For A C a(R™) by A denote the closure
of A in a(R™).

Lemma 3.4. Let {C; : i € I} be a family of connected and unbounded subsets of R™ and let C := J,;.; C;.
Then

(1) C~ = CU{o0};

(2) C~ is connected.

Proof. (1) The set C'U {oo} is closed in a(R™), since (R™ U {oo})\ (C'U{oo}) =R™\ C is open in R™. Thus
C™ C CU{oc}. Since C is unbounded, then co € C~, and consequently C U {oc} C T~ .

(2) Note that mm = C U {oo} — it follows from (1) and inclusions C' C C' U {00} C C U {oo}. It
is enough to show that A := C' U {oo} is connected. Suppose to the contrary that there are two nonempty
disjoint open sets U and V with A = (ANU)U(ANV) and co € U. Put U’ :=U \ {oo}. Then U’ is open in
R™. There is a compact set D C R™ such that (X \ D)U{oc} =U. Then X \ D =U’ and V C D. Since V
is nonempty, there is i € I with V N C; # (. But then C; = (VN C;) U(U N C;) and by the connectedness of
C; we obtain C; C V C D which contradicts the unboundedness of C;. O

Theorem 3.5. Let Y., z, be a conditionally convergent series in R™ and let 0 € S be a permutation
of indezes. Then the set X = LIM(Y To(ny) is either compact connected or it is a union (finite, infinite

countable or uncountable) of unbounded closed connected sets; in particular X s compact and connected.
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Proof. Since X is closed in R™, X~ = X if X is bounded and X = = X U {oo} if X is unbounded. On X *
define an equivalence relation F given by the decomposition of X into components.

Assume that C is a bounded component of X. There is R > 0 such that C' C B(0, R) and C N S(0, R) = 0.
Suppose that the set Z := [J{C" : C" is component of X N B(0, R) such that C' N S(0, R) # (} is nonempty.
Then, by Lemma 3.1, Z is compact in R”. Put U := (X N B(0,R))\ Z. Then U is open in X . and
U = ¢ *(q(U)); therefore q(U) is open in X _/E. Since C € q(U) and X /E is zero-dimensional, there is
a clopen set V C X /E with C € V C ¢(U). Since Z and Y := ¢~ (V) are compact, there is ¢ > 0 with
Y(e)NZ =0 and (Y(e) \Y)N X~ = ; consequently Y(¢) N X \' Y = (. By Lemma 3.3 we obtain that
Z C X \'Y = () which gives a contradiction. Thus Z = (). Therefore there are no components of X having
nonempty intersection with S(0, R). Thus X NB(0, R) = ¢~'(¢(XNB(0, R))) and consequently ¢(X NB(0, R))
is open in X~ /E. Since X /E is zero dimensional, there is a clopen V with C' € V C ¢(X N B(0, R)). Thus
Y := ¢ (V) is clopen and it contains C. There is € > 0 such that Y (¢) C B(0, R) which means that Y (¢) is
disjoint with X \ Y. By Lemma 3.3 we obtain that X is bounded.

We have already proved that if C' is a bounded component of X, then X is bounded itself. That means
that if X has an unbounded component, then each its component is unbounded and, by Lemma 3.4, X7 is
connected — equivalently ¢(X ) = [0o]g. Thus X is connected in a(R™) if X is unbounded. To finish the
proof we need to show that if X is bounded, then it is connected. If not, there would be two disjoint nonempty
clopen subsets Y and X \ 'Y of X. But then there would be ¢ > 0 with Y(¢) N (X \ Y)) = 0 which by Lemma

3.3 leads to a contradiction. O

4. THEOREM 3.5 DOES NOT HOLD IN INFINITELY DIMENSIONAL SPACES

Now we will define: a conditionally convergent series >~ y,, in ¢o such that >°7  y, = 6 := (0,0,...) and

its rearrangement o such that LIM(3"7° | 4,(n)) consists of two points.

Example 4.1. As in Example 2.2 and Example 2.3 the constructed series > -, y,, will be alternating, so
we will define only elements with odd indexes. Let {e; : i« € N} be a standard basis in ¢g. We define (y,)
inductively:

Step 1. At first we define three odd elements; the first equals es, the second equals e;, and the third equals
—€2;

Step k+1. In this step we define 3 - 2F elements of the series with odd indexes: the first 2% of them are equal
to 2%6;“_2, next 2% of y/ s equal %61 and the last 2* of them are equal to 72%6]64_2.

We define a rearrangement » - |, of Y. 7 | y, in the similar way as in Example 2.2. Namely, z1, 22, 3 are
consecutive elements of (y,) defined in Step 1 with odd indexes, that is x; = y1, 22 = y3,23 = y5. Next three
of z!, s are the elements of (y,) with even indexes corresponding to the odd indexes defined in Step 1 with
reversed order, that is x4 = yg, 5 = ya, 26 = y2. In Step k + 1 the first 3 - 2¥ x,,’s are consecutive elements of
(yn) defined in Step k + 1 with odd indexes, and next 3 - 2¥ x,,’s are consecutive elements of (y,) with even

indexes with reversed order. The sequence of partial sums s, = Y., @, is the following
ez, €2+ €1,€1,€2 + €1, €2, 0,

1 1 1 1 1 1
—es,e3,e3+ -e1,e3+e1,-e3+eq,e1, -e3+e1,e3+e1,e3 + -ei, ez, -e3,0,. ..

2 2 2 2 2 2
1 2 1 2k 1
2?6164_2, ﬁek_;_g, R N ﬁel, ...,Ckpo F €1, Tek—i_Q +e1,...,€1,
1 2k —1 2k — 1
e1+ 27kek+27 co,e1+ €k+2; €k42 + 27615 sy €2, Tek+2a R 797 s
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The walk (s,,) has the following properties:

i) 6 and e; appear infinitely many times in a partial sums sequence (s,);

iii) the distance between the point z = (2(1), 2(2),...) with z(1) ¢ [0,1] and the set {s,, : m € N} is positive;
iv) if $,,(1) ¢ {0,1} then there exists a natural k > 2 such that s,, (k) = 1.

We claim that LIM(3" 07 | #,) = {6, e1}. By (i) we get 6,e; € LIM(Y_,° | ,,). Conditions (ii) and (iii) give
us the inclusion LIM(3~°7 ; z,,) € {(a,0,0,...) : a € [0,1]}. Indeed, since z = (2(1),2(2),...) € LIM(}_>" | =)
then by (ii) we get z(i) = 0 for every ¢ > 2. Moreover, if z(1) > 1 or z(1) < 0 then by (iii) we have
z ¢ LIM(>." | ). Now, let a € (0,1). We will show that (a,0,0,...) ¢ LIM(>_>7, ;). One can find £ > 0
such that (a—e,a+¢)N{0,1} = 0. We consider the ball B((a,0,0,...),€) in co. If z € B((a,0,0,...),e)N{sm :
m € N} then z(1) € (a — e,a + €), hence the first coordinate of z is neither 0 nor 1. Then by (iv) there
exists a natural number k > 2 such that z(k) = 1 which contradicts the fact that z € B((a,0,0,...),e). Hence
B((a,0,0,...),6) N {s,, : m € N} = 0, so (a,0,0,...) & {s,, : m € N}. Since LIM(3>°° , z,,) is contained in
{5m : m € N}, we have (a,0,0,...) ¢ LIM(3°° | 2,,). Finally LIM(3°° , 2,,) = {0, e1}.

(
(ii) for every natural number j > 2 there exists p € N such that s,,(j) = 0 for every natural m > p;
(
(

Remark. Roman Wituta reminded us that he had found a very similar example of series with two-point

limit set, see [5].

5. ON THE REVERSE OF THEOREM 3.5

In this Section we will prove that Theorem 3.5 can be reversed. It means that for any compact and connected
subset X of a Euclidean space R™ there is a conditionally convergent series >~ | z,, and a permutation o € Sx
with X =LIM(3" 2, To(n)), and for any closed subset Y of R™ whose each component is unbounded there is
a conditionally convergent series > - | y, and permutation 7 € Sy with ¥ = LIM(> "7, Yr(n))- This shows

that Theorem 3.5 gives a full characterization of limit sets in finitely dimensional Banach spaces.

Theorem 5.1. Let m € N. Assume that X C R™ is closed and e-chainable for every € > 0. Then there
is a conditionally convergent series Y~ | xn in R™ such that X = LIM(}_" | Zy(n)) for some 0 € So. In

particular, the assertion holds if X is compact and connected.

Proof. Let (d,) be dense in X. We will construct an X-walk. In the first step we find a 1-chain inside X

between points d; and de and denote it a; = dy,as,...,a, = do. We define s; = a; for every ¢ € {1,...,p}.
Then we go back to d; using the same way, which means that s; = agp—; for i € {p+1,...,2p — 1}. In the
second step let agp,—1 = di,a2p,...,a2p—14r = d3 be a 2~ 1_chain between d, and ds. We define y,,’s in the
same way, that means they are the following elements of the next chain, s; = a; fori € {2p—1,...,2p— 1471}

and then we go back to d; via the same elements. In the third step we consider a 272-chain between d; and dy4
and define the next s,’s as before, and so on. By Proposition 2.1, we obtain the assertion. Finally, note that

connected sets are e-chainable for every € > 0. O

Theorem 5.2. Let m > 2. Assume that X C R™ is closed and any component of X is unbounded. Then there

is a conditionally convergent series Y~ |, i R™ such that X = LIM(3_)° | o (n)) for some o € S

Proof. Let X = {J,cp At, where for every t € T' the set A; is an unbounded component of X. Clearly each A;
is closed and e-chainable for every e > 0. Let (d,,) be dense in X. If d; € A, dj € Ay, Ay N Ay = 0, then,
by the connectedness and the unboundedness of A and Ay, there is a sphere S(0, R) which has non-empty
intersections with A and A;. Let a;, € A, N S(0,R) and a; € A, N S(0, R). By an e-chain via S(0, R) from
d; to d; we mean a concatenation of three e-chains: from d; to as using elements of A, from a, to a; using

elements of Sk and from d; to a; using elements of A;. If A, = A, then by an e-chain via S(0, R) from d; to d;
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we mean just an e-chain from d; to d; using elements of As. Let R,, be a sequence of radii tending to co such
that S(0, R,) has a nonempty intersection with each component containing dy, ..., d,+1. Now let us describe a
walk (s,,), which, in general, does not need to be an X-walk: The first elements of the walk (s,,) is a 1/2-chain
via S(0, R;) from d; to da, and then back via the same elements. In the k-th step of the construction the next
elements of (s,) are elements of a concatenation of 2~ *-chains via S(0, Ry) from d; to d;y1, i =1,...,k, and
then back from dj1 to d; via the same elements.

Using the same argument as in Proposition 2.1 we can find an alternating series > -, z, and 0 € So
such that s, = >0 | x(;). Clearly X C LIM(Y. ", 25(n)) € X UUpe; S(0,Ry). Since R, — oo and
the sequence (s,) contains at most finitely many elements of S(0, R;) \ X, we obtain the reverse inclusion
X D LIM(Y, 0. O

As we have mentioned in Introduction, the assertion of Theorem 5.2 is not true if m = 1.

6. WHEN A LIMIT SET IS A SINGLETON

By definition, if >°7 | z, = o, then LIM(}>_ 7, z,) = {zo}, since every subsequence of the sequence of
partial sums is convergent to xg. In general the inverse implication does not need to be true which is illustrated,

in ¢g, by Proposition 6.2. However, in finitely dimensional spaces the above implication can be reversed.

Theorem 6.1. Let Y., z, be a series in R™ with x, — 0. If LIM(>"07 | x,,) is a singleton, then > - | an
is convergent and {7 xn} = LIM(Y. 07| zy,).

Proof. Let LIM(Y">° | ,,) = {z¢}. Suppose that > > | x,, does not converge to o, so there exists £ > 0 such
that for every ko € N one can find [ > ko such that || Zilzl Zn — xg|| > €. That means that there are infinitely
many indexes p such that Y>> _ x, ¢ B(x,e). On the other hand, since z( is a limit point of the series
Yoo | @n, there exist infinitely many r € N such that > _, z,, € B(xo,e/2). Hence there are infinitely many
elements of a walk (s, ) of partial sums inside the ball B(zg,c/2) and infinitely many outside the closed ball
B(zo,¢). Since ,, — 0, there are infinitely many s,,’s in B = B(xg,¢) \ B(zo,¢/2). By the compactness of B,
it contains a limit point of (s,) which contradicts that LIM(>" 7 | z,,) is a singleton. O

Note that the assumption x,, — 0 cannot be omitted. To see this consider the series 27! + 2! — 21 4272 +

22 22 4273423 234 .. Clearly 1 is its only limit point, but the series is not convergent.

Proposition 6.2. There is a conditionally convergent series Y~ | @y inco and o € S such that LIM(Y. " | ©p(n)) =
{0} but 37 xo(n) diverges.

Proof. To define an alternating series Z _, Tn it suffices to prescribe only the elements with odd indexes:
Step 1. Firstly we define z1 = €.
Step k. The next 25~ elements with odd indexes are equal to 2%161@-
The series Y | z,, is the following
1 1 1 1 1 1 1 1 1 1 1

61—€1+562—§€2+§62—§€2+163—1634-163—163+Z€3—163+Z€3—163+...
Now we define a rearrangement » | Tq(n)- Firstly we use elements with odd indexes defined in Step 1, and
then the corresponding elements with even indexes; secondly we use elements with odd indexes defined in Step
2, and then the corresponding elements with even indexes, and so on. The rearranged series » | Ty(n) has
the following form

1 1 1 n
(43 463 €3

1 1 1
€1 —eyr+ jez + 2~ 562+ €3+ 63+ €3+ — —e3 — 1

1
g2 TR T YR Ty T S T ST e T s TS Ty
Thus the walk s,, = ZZ:I Ty(k) has the following properties:
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(1)

(2) for every natural number j exists p € N such that s,,(j) = 0 for every m > p;

(3)

From (1) we have the inclusion {6} C LIM(} )" Zy(,)) and from (2) we get the inverse inclusion. Hence
LIM( 0" Zo(n)) = {0}. From (1) and (3) we get |sorior-1_o(k) — sor1_9(k)|[| = [lex]| = 1 for every

k € N. That means that the sequence of partial sums of the rearranged series is not a Cauchy sequence, and

Sor+1_o = B for every k € N;

Sok1oh—1_o = €}, for every k € N.

consequently it diverges. O

7. REARRANGEMENT PROPERTY

Klee proved that if A C SR(Y..° | z,,) is closed and e-chainable for every ¢ > 0, then there is 7 € So such
that A = LIM(>_7" | #(»)). This is a strengthening of Theorem 5.1 - to see it take any conditionally convergent
series D7 | x, with SR(}_>2 | ,,) = R™. We show that this fact holds true in every Banach space provided
anl Zp, has the so-called Rearrangement Property. In fact we prove that if A C m is closed and
e-chainable for every ¢ > 0, then there is 7 € S such that A = LIM(3_," | (). As a byproduct of this
observation we obtain that if >~ | z,, has the Rearrangement Property, then its sum range SR(Y .~ | x,) is

closed.

Lemma 7.1. Let > 7 | x, be a conditionally convergent series in a Banach space X. Then SR(Y.," | x,) =
SR(Y o i1 n) + Sk _ @, for every k € N.

Proof. 72" Let k € Nand z € SR(}_,)" ;.1 Zn) + Z _1 Tn. Then there exists a permutation o : [k + 1,00) —
[k +1,00) such that = Y7, | 50n) + Zn:1 Zp. Define w(n) =n for n < k and 7(n) = o(n) forn > k+ 1.
Hence =" | Zr(n), 50 € SR(Y 7| xp).

"C” Let x € SR(>.,_,x,) and k € N. Then there exists a permutation 7 : N — N such that z =
S Ta(ny- Let M = 7 '({1,...,k}). Then for every ¢ > 0 there exists mo > maxM such that for
every m > my the following inequality is true: ||z — > " | @r(m)| < e. It means that ||z — 25:1 Ty —
Donef1,...mpu Ta(m)|l < € for every m > my. Define a permutation o : [k + 1,00) — [k + 1,00) as follows

o(k +1) = m(n) where n is the I-th number in the set N\ M. Then z = Y7 | | Z5(m) + Zi:l z,. Hence
xGSR(Zn k+1xn)+2n 1Tn- O

We say that a conditionally convergent series Y .-, zj has the Rearrangement Property, or (RP), if for

every € > 0 there are: a natural number N(¢) and a positive real number §(¢) such that the implication

n J

I E yill < é(e) = (m<ax I E Yo(i)ll < € for some permutation o € Sn)
, j<n 4
i=1 =1

holds for every finite sequence (yi)ii; € (#:){2 y(.)- Note that if & > g’ > 0, then we can find numbers
d(e),N(g) and 6(¢'), N(¢') from the definition of (RP) used for ¢ and ¢, respectively, such that §(e) > (')
and N(g) < N(¢'). Similarly, having a decreasing sequence (e,,) of positive real numbers, we find 6(e,,), N(&,)
from the definition of (RP) such that (e,) > d(en+1) and N(ep,) < N(epy1) for every n € N.

Lemma 7.2. Assume that Y.~ x, is a conditionally convergent series with (RP) in a Banach space X. Let
e>¢ >0 and let 6(5),N(5) and 6(%),N(%) be numbers from the definition of (RP) used for § and %,
respectively. Let k € N, a,b € SR(Y | x,) with |la — b|| < min{5, % -0(5)}, and 7 : [1,k] = N be a partial
permutation such that || 22:1 Triny — all < min{5, 5 -6(5)} and mgT 2 [1,N(5)]. Then there exist k' > k
and a partial permutation 7 : [1,k'] = N such that the following conditions hold:

(1) 7|1 = 7 and [1, maxrng 7] C rng 7’;

2) I>F_, Triny —al < forpelk+1,K];
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(3) |58 2y — ) < min{ 55, - 6(5));
(4) rg(r >;[1,N<%>1'

Proof. Let kg = max{N(%),N(%),maxrngT}. Define y = 22:1 Tr(n) and z = Zne{17wko}\{7(1)_y__J(k)} T
Hence y + z = ko:l Zp,. From the assumption that b € SR(}",~, #,) by Lemma 7.1 we obtain b — (y + 2) €
SR(Y. kot1%n). Thus we can find ko < ny <ng <...<mn such that y+z+w € B(b,min{%,% . 5(%/), % .
§(5)}), where w =z, + ...+ Ty,.

Enumerate the set ([1, ko] \ {7(1),...,7(k)}) U{n1,...,m} as {m1 < ma < ... < mp_}, where k' = ko +1.

Hence,
K —k
|3 ]| = 12 0l < lly = all + lla =51+ 11— (0 + 2+ ).
i=1
Consequently7
1 1 N 1
H Z | <min{5.0(5) )+ min {55 -a(3)} 4 min {555 0(3)- 5 0(5)) < (5)
12’3 2 127 3 2 1273 2773 2 2
Since m; > N(5) for i € [1,k" — k] and || Zz 1 P, || < d(5), by (RP) there is a permutation o € Sy/_j such

that || Zgzl T, || < § for every j € [1, k" — k]. Let us define 7/(n) = 7(n) for n <k and 7/(n) = mg(n_s) for
n € [k + 1,k']. Then for every p € [k + 1, k'] we have the following:

P k P P
H ZxT’(n) - aH = H Zxr(n) + Z Lrr(n) — CLH < Hy - a” + H Z Lz (n)

n=1 n=1 n=k+1 n=k+1

< '{E 1 §(€>}+E<s
ming-—,- 0|z =
- 1273 2 2

which gives us (2).

Now we check (1), (3) and (4). Note that the numbers 1,...,ky are among 7/(1),...,7'(k¥') and ko >
max rng 7. Therefore we have (1). Since Z]:L/:1 Ty =y +z+wand ly+z+w—0bf < min{%, %6(%)}, we
obtain (3). Condition (4) follows from the fact that if n ¢ rng(7’), then n > ko > N(%) O

Lemma 7.3. Let A be a subset of a Banach space such that A is separable and e-chainable for every e > 0.

Let (n;) be a sequence of positive numbers. Then there is a sequence (d,) dense in A with the property that

there is an increasing sequence (l;) such that {dy,,dy,11,...,d;,.,} is an n;-chain for every i.

Proof. Since A is separable, there are vy, vs, ... such that A = {v, : n € N}. Then one can find an 7;-chain:
di,,di11,-..,dy,,, of elements of A with d;, = v; and d;,,, = vi41 for any i € N. Clearly the sequence {d,};>;
fulfills the desired condition. d

Lemma 7.4. Let A bea separable and e-chainable for every € > 0 subset of a Banach space. Assume that
{d; : i € N} is a dense subset of A and (g;) is a sequence of positive numbers tending to zero. If (x;) is such
that ||z; — d;|| < ; for every i € N, then LIM(x;) = A where LIM(z;) denotes the set of all limit points of the

sequence (x;).

Proof. If A is a singleton, then d; = a, A = {a} and x; — a. Then LIM(z;) = {a} = A. Assume that A4 has at
least two elements. Clearly A is dense-in-itself. Fix ¢ € N. There is a sequence (d;, )72 ; such that j; < jo < ...
and ||d;, —d;|| < ¢j,. Then xj;, — d; and consequently d; € LIM(z;). Since the set LIM(z;) is closed, we have
A C LIM(z;).

Note that for every k almost every element of (x;) is in gj-shell of A. Thus A O LIM(x;). O

Theorem 7.5. Let 22021 Zn be a conditionally convergent series with (RP) in a Banach space X. Then for
every A C SR(Y_,2 | ) which is closed and e-chainable for every e > 0, there exists a permutation T € Seo
such that A = LIM(Y )" | Zr(n))-
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Proof. Let €; = 5. We fix numbers §(5), N($) from the definition of (RP) such that 6(5) > (%) and
N(5) < N(=f*) for every i € N. Since A is separable and e-chainable for every € > 0, using Lemma

7.3, let A = {d,, : n € N}, where for every i € N the elements d;,,d;, +1,...,d;,,, form a n;-chain for some

i+l

1=1 <ly <... where n; = min{5, &5 - 6(5)}. Note that (n;) is a non-increasing sequence of positive real
numbers.
Inductively we define natural numbers 1 = k; < ky < ..., one-to-one functions 7; : [1,k;+1] — N and
", db, ... fulfilling the following conditions

(i
(i

) Ti © Titas
)

(i) | >0 ) — di_y|| <& for p € [ki + 1, k1] and i € [[; + 1,1;41];
)
)

[1 maxrng 7;] C rng(7i+1);

(iv) d; € SR(Zn 1 Zn), ||d; — d;]| < nj where i € [I;,111 — 1];
W) |k ety Ty () — di|| < 4my where i € [I5, 141 — 1];

(vi) g7 2 [1,N(F)] where i € [I;,1;41 —1].

Define z = 271:/:((511/2) z,. Let di € SR(}.,”, x,) be such that ||di — di| < n:. Hence from Lemma 7.1
we get df —x € SR(Z?\?(%)H r,). Let m : [N(5) + 1,00) — [N(5) + 1,00) be a bijection such that
di —x = E?:N(EI/Q)H Tr(ny- One can find a natural number ko > N(%-), which satisfies the inequality
|dy —x — EﬁiN(€1/2)+1 Tr(myll < mi. Define 71(k) = k for k < N(5-) and 71 (k) = n(k) for k € [N(5) + 1, k2.
Conditions (i)—(vi) are fulfilled for 71,d}, k1, k2. We do not need to check (i) and (ii), condition (iii) needs to
be checked for i > I; + 1 = 2 and conditions (iv)—(vi) are fulfilled since {; = 1.

Assume now, that we have already defined 71,...,7, k1 < -+ < kiy1 and di, ..., d} fulfilling (i)—(vi). Find
d;, such that (iv) holds. We use Lemma 7.2 for a = d;, b=dj |, 7T=T,e=¢jwherel; <i<lj ;-1 =¢,
where l; —1 <4 <l,41 —2, and k = k;j1; note that j = ¢ if [; <i <lj4q —1, thatisifi ¢ {l, —1:s> 1},
otherwise ¢ = [;;1 — 1 implies that ¢ = j+ 1. Let us check the assumptions of Lemma 7.2. By (iv) and (vi) we
obtain a,b € SR(}_,~; ©n) and rng7 2 [1, N(5)]. Since dy,,di, 41, ..., d;,,, form a n;-chain, by (iv) we obtain

1 €
la = bl < s = dill + llds = il + i = i || < 5+ + 15 <y = min { =, = 5(5) }-

By (v) we obtain || Z 1Ty — al| < 4n; = min{5, 5 - 6(5)}. Now, using Lemma 7.2 we find kijo > kiy1
and function 7,41 : [1, k;12] — N such that

(1) Tix1li,kiyy) = 7 and [1, maxrng 7;] C rng 7iq1;

(2) [1>P_, Tr, () — dill <ej where p € [kip1 + 1, kiqo] and @ € [Ij, 111 — 1];

3) | an+12 xnﬂ(n - d;_HH < 4n, where i € [lq —1Llg41 — 2J;

(4) mg(riy1) 2 [1, N(F)] where i € [lg — 1,141 — 2].
Note that 71,..., 741, k1 < - < kiyo and dy, ..., d;  fulfill (i)—(vi): By (1) we obtain conditions (i) and (ii).
Since the condition i + 1 € [I; + 1,1;41] is equivalent to i € [I;,1;41 — 1], we obtain (iii). The element dj  ; has
already been chosen to fulfill (iv). Conditions (3) and (4) are exactly (v) and (vi) for ¢ + 1.

Let 7 =;5; 7 : N = N. Then (i) implies that 7 is one-to-one. Condition (ii) implies that 7 is onto N, and
consequently 7 € S By (iii) and (iv) we obtain that the distance between A and Y7 _; () is less than 1/27
for almost every p € N. Thus LIM(}"7° | #,(,)) € A. By (iv) and (v) we obtain that || Zn+11 Trny—dil| < 5m; <
e; where i € [Ij,1;4+1 — 1]. Thus by Lemma 7.4 we get A = LIM((Zn’+11 Tr(n))i2y) © LIM(Y .7 ) rn))- O

It is well-known that every conditionally convergent series of elements in a finite dimensional Banach space
has the (RP), for detail see [2]. Thus, the Klee’s result which we have mentioned at the beginning of this
Section is a particular case of Theorem 7.5. Combining methods used in proofs of Theorem 7.5 and Theorem

5.2 one can prove the following strengthening of Theorem 5.2.
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Corollary 7.6. Let m > 2. Assume that SR(>_—, z,) = R™, X CR™ is closed and any component of X is
unbounded. Then X = LIM(D )" | Zo(n)) for some 0 € Soo

Note that singletons are trivially e-chainable for every € > 0. Fix a € m Using Theorem 7.5 for
AC m such that A = {a}, we obtain that there is 7 € S such that LIM(D )" | -(,)) = {a}. As
we have seen in Proposition 6.2 is does not necessarily mean that anl Tr(n) = a. However, if we put d; = a,
then dj — a and by condition (iii) we get that almost all elements of the sequence (3.7 _; ;)52 of partial
sums are in every neighborhood of a. Therefore Y~ ° | x.(,) is convergent to a. Thus a € SR(}_,”, z,,). Hence

as a byproduct of the proof of Theorem 7.5 we obtain the following.

Corollary 7.7. Let Y.~ |z, be a conditionally convergent series in a Banach space X, which has the (RP).

Then its sum range SR(Y .~ x,,) is a closed set.

Now, we will discuss a problem whether or not Corollary 7.7 can be reversed, namely whether or not the
closedness of the sum range SR(>,-, #,,) implies the (RP) for a series > -, z,,. By S,, we denote the set of

all permutations of the set [1,n].

Lemma 7.8. Let k € N andn = (2}5)’ then there exists a finite sequence x1, ..., T2, € R™ such that:
(1) ||zillsup = 1 for every i < 2k.
(2) || Zf 1To(4) ||sup > k f07" every o € Sgk.

(3) ka1 z; = 0.

Proof. Let k € N. There are n = (2,5) sequences of length 2k consisting of £ many 1’s and k£ many —1’s.
Enumerate all such sequences as t1,...,t,. Define z;(j) = ¢;(i) for j = 1,...,n and i = 1,...,2k. Now,
if 0 € Sai, then there is a sequence t;, such that ¢; (o(i)) = 1 for i = ,...,k and t;_ (o(i)) = —1 for
i=k+1,...,2k. Thus

k
Z Lo (i) (jo) =k,
=1

and consequently

k
H Zxo(i)||sup > k
1=1

O

Before we state the last result, first note that if the series > .- x; does not have (RP), then one can find
€ > 0 such that for every § > 0 and N € N there exists the finite subsequence {y;}7; C {x;}2 for which

two conditions hold:

o 22 will <.
e for every o € S, there is j < n such that || Y7, yo()llsup > €

The following theorem shows that Corollary 7.7 cannot be reversed.

Theorem 7.9. There is a conditionally convergent series Y .| 2z, in ¢ such that it does not have (RP) and

its sum range SR(Y_,~_, zn) is a singleton, in particular it is a closed set.

Proof. Define e, = (;5,)2, for every n € N, where d;, = 1, if i = n and §;,, = 0 otherwise. Let ng = 0 and

ng = (2k+1) +ng_1. For every k € N let o:(k), .. xé’,ﬁ)ﬂ € R™~"-1 will be the sequence constructed in Lemma
7.8. Define y( ) = o - o Ek)( i) - €ny_,+; for i,k € N. It easy to see that y( ) € ¢o. Define the series

o0 | zn as follows:

1 1 1 1 1 1 1 2
leyi),22:—y§)72 _yé)v :_yé)az5:y;(3)a y§)7 _yi)vzsz_yi)z _y£)7 0:_y£)7
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It easy to see that Y | z, converges to 0.

Let e = 1and N € N, § > 0. One can find £ € N, such that ny_; > N. Then by Lemma 7.8 for
(k) (k)

(yy 75 7y2k+1) C (Zi)iZN and every permutation o € Syr+1 we have
2k ok
1 (k) 1 *) 1,
”27 ' Zya(i)nsup = ”27 ’ ng(i)Hsup > 2? 2P =1=c¢.
=1 i=1

Moreover || Zle ygk) | =0 < 4. This proves that the series >~ 2, does not have (RP).

Since the projection of the series on each coordinate contains only finitely many nonzero terms and a finite

sum does not change under rearrangements, then SR(>"°7 , z,) = {6}. O
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