TWO POINT SETS WITH ADDITIONAL PROPERTIES
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ABSTRACT. A subset of the plane is called two point set whether it intersects
any line in exactly two points. We give constructions of two point sets pos-
sessing some additional properties. Among these properties we consider: being
a Hamel base, belonging to some o-ideal, being (completely) nonmeasurable
with respect to different o-ideals, being k-covering.

We also give examples of properties that are not satisfied by any two point
set: being Luzin, Sierpiniski and Bernstein set.

We also consider a natural generalizations of two point set, namely: partial
two point sets and n point sets for n = 3,4, ..., R, 1. We obtained consistent
results connecting partial two point sets and some combinatorial properties
(e.g. being m.a.d. family).

1. INTRODUCTION

At the beginning of the XX century Mazurkiewicz in [11] constructed a set on
the plane which meets any line in exactly two points. Any such set is called a two
point set.

Any two point set must be somehow complex, namely Larman in [9] show that
it cannot be F,. It is a long standing open problem whether there is a Borel two
point set (see [10]). The best known approximation to that problem is due to Miller
who, assuming V' = L, proved that there is a coanalytic two point set [12].

The aim of this paper is to construct two point sets which posses some ad-
ditional properties. First, we focus on being Hamel base and being completely
I-nonmeasurable. (A is completely I-nonmeasurable if the intersection A N B does
not belong to I for any Borel set B ¢ I; see e.g. [3], [14], [15], [19].)

We also construct a two point set which does not belong to the o-algebra s (of
Marczewski measurable sets). In contrast, we prove that there exists a two point
set which belongs to the o-ideal sy (of Marczewski null sets). In particular, we
generalize result from [13].

Recently Schmerl proved in [16] that there is a two point set which can be covered
by countably many circles. In particular, there is a two point set which is meager
and null.

We positively answer the question whether every n point set (for n = 2,3,...)
can be represented as a union of n bijections. We also show that any two point set
does not contain an additive function. We construct a two point set which does not
contain any measurable function.
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We observe that a two point set cannot be any of the following: a Luzin set,
a Sierpinski set, a Bernstein set. However, under C'H, we construct a partial two
point set which is a strong Luzin set (or a strong Sierpinski set).

We also compare the notion of x point set with the notion of k-covering and x-
I-covering. (A is k-covering if for every subset X of size k there exists a translation
h of R? such that h[X] C A; A is s-I-covering if for every subset X of size s there
exists an isomorphism h of R? such that h[X] C A; see [7].)

We give some consistent examples of partial two point sets which are, in a sense,
m.a.d. families, maximal families of eventually different functions.

2. COMPLETELY [-NONMEASURABLE HAMEL BASE

We say that I is a o-ideal of subsets of R? if I is closed under taking subsets and
closet under taking countable unions.

Let I be a o-ideal of subsets of R? containing all singletons and having a Borel
base (i.e. for every I € I there is a Borel set B € I such that I C B). We recall
the notion of completely I-nonmeasurability which was studied in e.g. [3], [7], [14],
[15], [19]. This notion is also known as I-Bernstein set.

Definition 2.1. We say that a set A C R? is completely I-nonmeasurable iff it
intersects all I-positive Borel sets (i.e sets which are in Borel \ I) but does not
contain any of them.

When I = [R?]=% then the notion of completely I-nonmeasurable set coincide
with the notion of a Bernstein set.

We will assume that I is a o-ideal of subsets of R? with the property that for
every [-positive Borel set there is ¢ many pairwise disjoint lines which intersect it
on the set of cardinality c.

Let us observe that o-ideal of null sets .4 and o-ideal of meager sets .# on
the real plane (by Fubini Theorem and by Kuratowski-Ulam Theorem) fulfill this
condition.

We say that H C R? is a Hamel base if H is a base of R? treated as a linear
space over Q.

Theorem 2.2. There exists a two point set A C R? that is completely I-nonmeasu-
rable Hamel base.

Proof. Let {l¢ : £ < ¢} be an enumeration of all straight lines in the plane R?, let
{B¢ : £ < ¢} be an enumeration of all I-positive Borel sets on a plane R? and let
{he : € < ¢} be a Hamel base of R?. We will define, by induction on £ < ¢, the
sequence {A¢ : £ < ¢} of subsets of R? such that for every £ < c:

(1) |Ae] <w,

(2)
(3)
(4> Ben Uqgg AC # 0,
(5) <¢ A¢ is linearly independent over Q,
(6) he € spang(Ue<¢ A¢)-
To make an inductive construction assume that for some & < ¢ we have already
defined the sequence {A¢ : ¢ < &} which fulfills (1)-(6). Let Ace = ;¢ Ac.
Clearly |A<¢| < ¢. Let £ be the family of all lines which meet A in exactly two
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points. Then |£]| < |AZ,| < ¢. Moreover |spang(A<¢)| < ¢. We will define A¢ in
three steps. In each step we will focus on one of desired properties of Ag.

Step I (two point set). Note that (2) implies [¢ N A<¢ has at most two points.

If |le N Ace| = 2, then set Aél) = 0.

Let us focus on |l N Acg| < 2. Then |l N1| < 1 for any | € L. Therefore
lle \ U L] = ¢. Choose

M e e\ spang (A<5 U Uleﬁ(l N lg)) ,

yM el \ spang (A<§ u{zM}u Ulec(l N lg)) .

Set Aél) = {zM, yM}if ANl = ) and set Aél) = {zM} if A_¢Nlg is a singleton.
Step II (complete I-nonmeasurability). Let L be the family of all lines which
meet Ao U Aél) in exactly two points. Then |£'| < ¢ and £ C L'. Since B is
I-positive Borel set, therefore we can find a line I such that I N (A<¢ U Aél)) =0
and |l N Be| =c¢.
Choose

2@ € (10 Bo) \ spang (A<cu AP U, (1010)).

Set AEQ) = {z@}.

Step III (Hamel base). Let us focus on the condition (6). If he € spang(A<¢ U
Aél) U A?))7 then set A?) = (). Assume now that he ¢ spang(A<e U Aél) U Aé2)).
Let £” be the family of all lines which meet A U Aél) U AéQ) in exactly two
points. Then |£”] < ¢ and £ C £’ C L”. Choose the line [ parallel to he, with
IN(Ace U Aél) U A?)) = (). Choose

2@ € 1\ spang, (A<5 AL UAD Ufheyul ) an lg)) .

le,c“(
Set y®) =2 4 he. Then,

y3 el \ spang, (A<§ U Aél) U Aéz) u U N lg)) .

leL” (
3
Set Aé ) = {2(3) 43},
Finally set Ae = A U AP U ALY
Clearly conditions (1)-(6) are satisfied. So, the inductive construction is finished.
The set A = U5 < A¢ will have desired property. Evidently, conditions (2) and
(3) imply that the set A is a two point set. Since every I-positive Borel set must have
an uncountable section so the set A does not contain any set from {Be : ¢ < ¢} and
(4) makes sure it intersects all of them, so the set A is completely I-nonmeasurable.

Moreover, conditions (5) and (6) imply that A is a Hamel base of R?.
O

Considering I = .47, we get the following corollary.

Corollary 2.3. There exists a two point set A C R?, that is a Hamel base such
that M\(A) = M(R?\ A) = 0, where N\« denotes the inner Lebesgue measure on the
plane.
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3. MARCZEWSKI NULL AND MARCZEWSKI NONMEASURABLE SET

In this section we will consider a o-ideal sy and a o-algebra s of subsets of R?
that were introduced by Marczewski (see e.g. [17], [6]).

Definition 3.1. We say that a set A CR

(1) belongs to sg iff for every perfect set P there exists a perfect set Q@ C P
such that QN A = ().

(2) is s-measurable iff for every perfect set P there exists perfect set Q C P
such that QN A=0or Q C A.

(3) is s-nonmeasurable iff A is not s-measurable.

Definition 3.2. We say that a subset A C R? is a Bernstein set iff for every perfect
set P C R?2
ANP#DPNA NP #D.

Let us recall that every Bernstein set is s-nonmeasurable.
Let us start with the result connected with the o-ideal sy of Marczewski null
sets.

Theorem 3.3. There exists a two point set A C R? that belongs to sg.

Proof. Let {l¢ : £ < ¢} be an enumeration of all straight lines in the plane R?. Let
{Q¢ : € < ¢} be an enumeration of all perfect sets in R? such that every perfect set
occurs ¢ many times.

We will define, by induction on & < ¢ sequences {A¢ : £ < ¢} of subsets of R?
and {P: : £ < ¢} of perfect or empty sets such that

(x)  for every perfect set @ there is § < ¢ such that Pg, # 0 and P, C Q;

and for every & < ¢,

Assume that for some § < ¢ sequences {A¢ : ( < £} and { P, : ( < &} are already
constructed. Set Ace = ¢ Ac.

Assume first that for every line { in a plane, |Q¢ NI < ¢. Then |Q:N!| < w.
Since |A<¢| < ¢ we can choose a perfect set P C Q¢ such that Pe N A = 0
and |P: N1| < w for every line [. Since intersection of P: with any line is at most
countable then I, \ U;<¢ P¢| = ¢, for every n > € and e Pe N Upoe Ac = 0.

Assume now that there exist a line [ such that [l N Q¢| = ¢. If | = [, for some
a > &, then put Pe = (0. If I = [, for some o < &, then |l N Ac¢| = 2 and since
1N Qe is closed with [l N Q¢| = ¢ one can choose a perfect set Pe C Q¢ NI disjoint
with A<¢. Then |1, \ Uy<¢ Pc| = ¢ for every n > € and Uy Pe N U Ac = 0.

As in Theorem 2.3 we can choose a set A¢ satisfying (1) - (3) outside the set
UCS& P; what finishes inductive construction.

Finally, there exist sequences {A¢ : § < ¢} and {P: : § < ¢}, satisfying (1) - (6)
and by the construction they fulfill the condition ().

Then, the set A = U§ < A¢ will have the desired property. [l
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Let us note here that the unit circle intersects any line in at most two points
but it cannot be extended to a two point set. In [5] and [4] it was investigated how
small should be a subset of the unit circle to be extendable to a two point set. It
turns out that sets of inner positive measure on the unit circle cannot be extended
to two point sets. We show that there is a subset of the unit circle of full outer
measure which can be extended to a two point set.

Theorem 3.4. There exists a two point set A C R2 that is s-nonmeasurable.
Moreover, A contains a subset of the unit circle of full outer measure.

Proof. Let us observe that if B is a Bernstein set in some uncountable closed set
C then B is s-nonmeasurable. Moreover, if a set D is such that D N C = B then
D is also s-nonmeasurable.

We construct a two point set A such that its intersection with the unit circle
is a Bernstein subset of the unit circle. Let {l¢ : £ < ¢} be an enumeration of all
straight lines in R2. Let {P¢ : & < ¢} be an enumeration of all perfect subsets of
unit circle.

We will define inductively a sequence {A¢ : £ < ¢} of subsets of R? and a sequence
{ye : £ < ¢} of points from the unit circle such that for every £ < ¢

(1) 4] < w,

(2) Ug<¢ A¢ does not contain three collinear points,
(3) U¢<e A¢ contains precisely two points of I,

(4> Pen Uggg AC # 0,

(5) ye € P,

(6) Aen{yc: (<&=0.

The existence of the sequence {A¢ : & < ¢} follows in the similar way as in
Theorem 2.3. Here, the key observation is that for each perfect set P; of unit circle
there exist ¢ many straight lines passing through P and the origin.

Setting A = UE <c A¢ we obtain a two point s-nonmeasurable set. Clearly, A is
of full outer measure on the unit circle. O

Using the method from the previous section we can strengthen the results in the
following way.

Theorem 3.5. Let I a o-ideal of subsets of R? with the property that for every
[-positive Borel set there is ¢ many pairwise disjoint lines which intersect it on the
set of cardinality c.
(1) There exists a two point set A C R?, that is completely I-nonmeasurable,
so Hamel base.
(2) There exists a two point set B C R?, that is completely I-nonmeasurable,
s-nonmeasurable Hamel base.

To prove it one should combine the ideas of Theorems 2.3, 3.3 and 3.4.
The first part of the above theorem generalize the result from [13].

4. A UNION OF GRAPHS OF FUNCTIONS

In this section we will focus on the question whether a two point set can be
decomposed into a union of two functions having some additional properties.
Let us start with a simple observation.

Proposition 4.1. Every two point set is an union of two functions.
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Proof. Let A be a two point set. In particular it intersects every vertical line in
exactly two points. For 2 € R let us denote by A” = AN ({z} x R). Clearly A®
has two elements, so A* = {(z,y1), (z,y2)}. Define the functions f1,fo : R - R
as follows f1(z) = y1, f2(x) = y2. Then we get that A = f1 U fo. This finishes the
proof. O

Let us introduce a notion which generalize in a natural way the notion of two
point set.

Definition 4.2. Let x be a cardinal number, x > 2. We say that a subset of the
plane is a K point set iff it meets any line in exactly s points.

Proposition 4.3. Let n > 2 be a natural number. For any n point set A there is
no additive function f C A.

Proof. Let A be an n point set and suppose that there is an additive function
f € A. Notice that f(2) = f(1+1) = f(1) + f(1) = 2f(1) and, more generally
for k > 1, f(k) = kf(1). So points (1, f(1)), (2,2f(1)),...,(n+1,(n+1)f(1)) are
members of A which lies on the same line. This leads to a contradiction. O

Now, let us focus on the class of bijections.
We will use the following theorem (see e.g. [1]).

Theorem 4.4 (Hall). Assume that X, Y are infinite sets. Let R C X XY be a
relation that fulfills the following property

(VE e N)(vVX' € X)(|X'| =k — [R[X"]| = k),

where R[X'] ={y: (3z € X')((z,y) € R)}. Then there exists an injection h : X —
Y such that h C R.

We will also use the following theorem (see e.g. [6]).

Theorem 4.5 (Cantor, Bernstein). Let X, Y be any sets. Assume that f : X —Y
and g : Y — X are injections. Then there exists A C X and B CY such that
fTA:A=Y\Bandg| B:B— X\ A are bijections.

Theorem 4.6. Fiz a natural number n. Let A C R? be such that its intersection
with every horizontal and vertical line has exactly n elements. Then there exist n
bijections Fy, ..., Fy,_1 : R — R such that A= FoU...U F,,_;.

Proof. Let us notice that A C R x R fulfills the assumptions of Theorem 4.4. So
there exists an injection f : R — R such that f C A.

A set A7' = {(z,y) : (y,z) € A} also fulfills the assumptions of Theorem 4.4.
So there exists an injection g : R — R such that g C A~!.

By Theorem 4.5 we can construct a bijection Fj : R — R of the form Fy = (f |
A)U(g! [ (R\ A)). So, Fy C A.

Let us notice that A\ Fy is such that its intersection with every horizontal and
vertical line has exactly n — 1 elements. So, the proof can be finished by a simple
induction. (]

We get the immediate corollary.

Corollary 4.7. Let n > 2 be a natural number. Any n point set can be decomposed
into n bijections.
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One can ask if any two point set can be decomposed into two measurable (with
Baire property) functions. We will prove that this is not the case. Moreover,
there is a two point set which does not admit a measurable (with Baire property)
uniformization.

We will use the following, probably well-known, lemma. We give a short proof
of it for reader’s convenience.

Lemma 4.8. There exists an unbounded F, set C C Ry of measure zero such
that its intersection with any interval in Ry is of cardinality c. (In particular, C is
meager.)

Proof. Let C denote the standard ternary Cantor set. Let Q4 denote the set of
positive rationals. Set

C=C+Qi={z+y: 2€CAryecQ;}.
This finishes the proof. (I

Theorem 4.9. For any Bernstein set B C R there exists a two point set A C R?
which is null and meager such that for any function f C A, f~1((0,1)) is B.

Proof. Let B C R be a Bernstein set and let {l¢ : { < ¢} be an enumeration of all
straight lines in the plane R%. Let C* = {r-¢® : t € [0,27],r € C} where C is the
set from Lemma 4.8. Notice that C* is F,-set. By Fubini’s Theorem and Ulam’s
Theorem the set C* is meager and of measure zero in the plane R?. Notice that
lle N C*| = ¢ for any { < ¢. We will define, by induction on £ < ¢, the sequence
{A¢ : £ < ¢} of subsets of C* such that for every £ < ¢,

(1) [Ag] <w;

(2) Ue<e Ac does not have three collinear points;
(3) Uc<e A¢ contains precisely two points of I¢;
(4)

4) If l¢ is a vertical line with z—coordinate z¢ € B then {J.., Ac Nle C
{e} x (0,1);

(5) If l¢ is a horizontal line with y—coordinate ye € (0,1) then .o, Ac Nle C
B x {ye};

(6) If neither (4) nor (5) then (chg Acn zg) N (B x (0,1)) = 0.

Assume that for some ¢ < ¢ the sequence {A¢ : ¢ < &} is already defined. Set
Ace = UC <€ A¢. Let £ be the family of all lines which meet A.¢ in exactly two
points. Then |£| < [A%Z.] < ¢. Note that Lg N A<¢ has at most two elements.
Consider three cases.

Case 1 (l¢ is a vertical line with x—coordinate x¢ € B). If |l N Ac¢| = 2 then
put Ae = 0. If [le N Ace| < 2, then |le N 1| <1 for any | € £. Choose two numbers
yé,yg € (0,1) such that (xg,ygl), (xg,yg) € (C*Nle) \ (Ujeg INle) - It is possible
since |C* Nlg| = cand |Uyep [N le| < c. Set Ae = {(ze,4¢), (we, y2)} if leNAe =0
or Ag = {(ze,y{)} if [le NAce| = 15

Case 2 (l¢ is a horizontal line with y—coordinate ye € (0,1).) Since I N C* is
uncountable Fy, it contains a perfect set and |m1[le NC*|NB| =c¢. If [le N Ace| =2
then put Ae = 0. If |l N Ac¢| < 2, then |l N1| < 1 for any | € £ and choose an
arbitrary two points x%, xg € B such that (x%, Ye), (mg, ye) € (C*NI)\ (Upep LN L) -

Set A¢ = {(xg,ye), (12, ye)} if le N Ace = 0 or A = {(ze, y¢)} if [le N Ace| = L
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Case 3 (otherwise). If |l:NA<¢| = 2 then set Ae = 0. If [[cNA-¢| < 2 then |l¢N| <
1 for any I € £ and choose an arbitrary (zf,y¢), (22, 9¢) € (C* Nle) \ (Uiee INle)
with x%,x? ¢ B and ygl,yg ¢ (0,1). It is possible since |m[le N C*] N (R\ B)| =¢.
Set Ae = {(zg,y¢), (22, y2)} if le N Ace = 0 or A = {(zg,ye)}if le N Ace| = 1
At the end set A = J;_. A¢. Since A C C*, it is meager and null. By (4)-(6) if
f € Athen f71((0,1)) = B.
]

5. LUZIN AND SIERPINSKI SET
We start this section with the definitions of special subsets of the real plane R?.

Definition 5.1. We say that a subset A C R? is a Luzin set iff intersection of the
set A with every meager set is countable.

Moreover, a set A C R? is a strongly Luzin set iff A is a Luzin set and the
intersection of A with every Borel nonmeager set has cardinality c.

Definition 5.2. We say that a subset A C R? is a Sierpinski set iff intersection of
the set A with every null set is countable.

Moreover, a set A C R? is a strongly Sierpiniiski set iff A is a Sierpinski set
and the intersection of A with every Borel of positive Lebesgue measure set has
cardinality c.

The following remark holds.

Remark 5.3. Assume A C R? is two point set. Then

(1) A is not Bernstein,
(2) A is not Luzin,
(3) A is not Sierpiriski.

Proof. 1) Each line [ is a perfect set such that |ANI| = 2, so A cannot be a Bernstein
set.
2) Let M be a perfect meager subset of R. Then M X R is meager and

(M x R) N A| = 2| M| =c.

So, A cannot be a Luzin set.
3) Let N be a perfect null subset of R. Then N x R is null and

[(N xR)NA|=2|N|=r¢.
So, A cannot be a Sierpinski set. O
Let us give the following definition.

Definition 5.4. A set A C R? is a partial two point set iff A intersects every line
in at most two points.

Theorem 5.5. (CH)

(1) There exists a partial two point set A that is a strong Luzin set.
(2) There exists a partial two point set B that is a strong Sierpiriski set.

Proof. Let us focus on the Luzin set. The case of the Sierpinski set is similar.

Fix a base {B, : @ < w;} of the ideal of meager sets and let {D,, : & < w1} be
the enumeration of Borel nonmeager sets such that each set appears w; many times.
We will construct a sequence {z,, : @ < wy} satisfying the following properties:
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(1) Ay ={z¢: & < a} does not contain three collinear points,

(2) 2o € Do\ Ue, Be
We will show that at any « step we can pick x,, such that (1) and (2) are fulfilled.
Since Ag is countable so is |, A¢. Therefore the set

Loo={l: lisaline and |l U U£<a Ae| =2}

is countable. Hence, both L., and U§ <o Be are meager. Consequently, one can
pick a point z, from D, that meets neither L., nor U£<a Be¢. So, the inductive
construction in done.

Finally, set A = {2, : a < wy}. It is a required partial two point set that is
strong Luzin. (I

Let us remark that sets A and B constructed in Theorem 5.5 are sg. Moreover
A is strongly null and B is strongly meager. For the definitions of strongly meager
and strongly null we refer the reader to [2].

Theorem 5.5 can be strengthen. If we assume that add(.#) = cof(.#) = « then
we can construct partial two point set A such that |A| = « and for every Borel set
B,|BNA| <kifand only if B € .#.

The analogous observation is true in the case of null sets 4.

6. K-COVERING

At the beginning of this section we will recall the notion of k-covering and k-I-
covering (see [7]).

Definition 6.1. Let k be a cardinal number. A set A C R? is called a k-covering
iff
(VX € [R?")(3y € R?) y+ X C A.
where y + X denotes {y +z: z € X}.
Let Iso(R?) be the group of all isometries of the real plane R2.

Definition 6.2. Let x be a cardinal number. A set A C R2 is called a k-I-covering
iff
(VX € [R?]")(Jg € Iso(R?)) g[X] C A.
Obviously, if A is k-covering then A is k-I-covering and if kK < A then A is
k-covering (k-I-covering) implies that A is A-covering (A-I-covering).
Let us start with the following result.

Theorem 6.3. There exists a Rg point set which is not 2-I-covering.

Proof. Let us enumerate the set of all lines Lines = {l¢ : £ < ¢} in R%. We construct
the transfinite sequence (Ag¢ : € < ¢) of countable subsets of R? such that for every
E<a

(1) INAe =0 for every | € Lg,

(2) if lg ¢ Log then |le N Ag| = Ny,

(3) d(a,b) # 1 for every a,b € U, Ac.
where Lo¢ = {l € Lines : [IN{J,_ A¢c| =Ro} and d : R? x R? — R, denotes the
standard metric on R2.

Let us notice that L.¢ C {l € Lines : [IN{J,_, Ac[ > 2}. So, |L<¢| < ¢ and The

inductive construction can be done.
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Now, setting A = [ A¢, we obtain the requested set. Indeed, (1) and (2)
implies that A is an Ry point set and (3) guaranties that A is not 2-I-covering. O

Theorem 6.4. There exists a Wy point set which is Rg-covering.

Proof. Let us enumerate the set of all lines Lines = {l¢ : { < ¢} and the family
of all countable subsets of the real plane [R*]* = {X, : £ < ¢}. We construct the
transfinite sequence ((Ag,ye) € [R?]¥ x R? 1 £ < ¢) with the following properties:

(1) InAe =0 for every | € L¢,

(2) if lf ¢ ,C<§ then ‘lg n A§| = Ny,

(3) Ye + Xg - AE'
where Lo¢ = {l € Lines : [INJ_, Ac| =No}.

Let us notice that

{y: y+Xen|JLee #0 ={y: weXNeleeyt+aecly= ] (J I-=
l€Loe vEX:

The latter set, as a union of < ¢ many lines, does not cover the whole R?. Set y
in such a way that y, ¢ UleL<§ Uxexg I — z. The rest of inductive construction is
similar as in Theorem 6.6.

The resulting set A = |J._ A¢ is an Ro point set by (1) and (2). y¢’s constructed
in (3) witness that A is Rg-covering. O

Theorem 6.5. It is relatively consistent with ZFC that 8y < ¢ and there exists a
Ny point set which is also Nq-covering.

Proof. Let us consider V' a model of ZFC such that V F ¢ = 28t = N,. Such a
model can be obtained by adding wo Cohen reals to the constructible universe L.
The rest of the proof goes in the similar way as the proof of Theorem 6.4. (]

We can obtain the following result.

Theorem 6.6. Fiz an integer n > 2.

e There exists an n point set which is not 2-I-covering.
o There exists an n point set which is n-covering.

Proof. The proof of this theorem is similar to the proofs of the Theorem 6.3 and
Theorem 6.4. ]

Let us recall that A is 2-covering iff A — A = R2. This gives the following result.
Corollary 6.7. There exists a two point set A such that A — A = R2.

7. COMBINATORIAL PROPERTIES

Let us recall that a family A of infinite subsets of w is an almost disjoint family
(ad) iff any two distinct members of A has finite intersection. A is a mazimal almost
disjoint family (mad) iff it is ad family which is maximal with respect to inclusion.

Analogously, we say that B C w® is a family of eventually different functions iff
every two distinct members z,y € B are equal only on a finite subset of w.

Let k be a cardinal number. We say that the family {A; € P(w) : { < k} is a
tower iff

o (V¢,n<k)E<n— A, CF A; and
e there is no B € [w]* (V§ < k) B C* Ag.
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Here, A C* B means that |A\ B| < w.

Theorem 7.1 (CH). Let h : R — w® be a bijection. There exist a partial two
point set A C R? such that a family hmi[A] Ums[A]] forms a mazimal family of the
eventually different functions. (w; denotes the projection on i-th coordinate.)

Proof. Let w¥ = {fs : « < wi}. By transfinite induction we will construct a set
A={ac: E<wi} C R2 such that for every a < wy
(1) Ay ={ae: & < a} is a partial two point set,
(2) F, = hm[Aa] Um[A,]] is a family of eventually different functions,
(3) (3 < a)(Fi €{0,1}) [fa N h(mi(ag))| = Ro.
Assume now that we have already constructed a set A,.
Case 1. (fo is eventually different from every function of the form h(m;(a¢)) for
¢<aandie€{0,1})Set 2, = h™1(f,). We can find y, € R such that

e (Z4,Ya) does not belong to any line from L£(A4,),
e h(ya) is eventually different from every function from F,, U {f4},

where £(A,) denotes the family of all lines intersecting A, in exactly two points.
A point y, can be found since A, is countable.

Case 2. (|fa Nh(mi(ae))| = No for some & < a and i € {0,1}) Then we can find
Ta, Yo € R such that

e (Z4,Ys) does not belong to any line from L£(A4,),
o F,U{h(za), M(ys)} is a family of eventually different functions.

Again, construction is possible since A, is countable.

Set ao = (Tq, Yo ). The inductive step is proved.

Let us notice that the resulting set A = J, <w, Ao 18 a partial two point set
by (1). hlmi[A] Uma[A]] is a family of eventually different functions by (2). The
maximality of this family follows from (3). O

Remark 7.2. The same result is true if we replace a maximal family of eventually
different functions by a mad family. (In this case we consider a bijection h : R —

[w]<)

In the proof of next theorem we adopt the method from Kunen’s theorem about
the existence of indestructible mad family (see [8]).

Theorem 7.3. Let us fix a standard Borel bijection h : R — [w]“. It is consistent
with ZFC+-CH that there exists a partial two point set A such that h[m [A]Ums[A]]
forms a mad family of size wy.

Proof. Let us consider a model V'’ obtained from V E CH by adding x > w; Cohen
reals (i.e. using forcing Fn(k,2)). It suffices to construct a partial two point set A
in V' which remains maximal in the generic extension V'.

Let us notice that, since every new uncountable subset of w has a name in Fn(7, 2)
for some countable I C k, it is enough to consider names in Fn(w, 2).

In V, let us enumerate all possible pairs (pe,7¢) : w < § < wy (by CH), where
pe € Fn(w,2) and 7¢ is a nice name for an infinite subset of w. Take any countable
sequence (F! :n € wAi € {0,1}) of pairwise disjoint countable subsets of w.

Now we define a transfinite sequence (F{ : w < & < wi A € {0,1}) satisfying
the following conditions for every & < wy:

(1) (F¢: ¢ <&nie{0,1}) is an almost disjoint family,
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(2) if (Vn < &)(Vi € 2pe Ik e N F| <w
then pe IF |7 ﬂFEO| =w or pg - |7¢ ﬁF51| =w,

(3) {ac = (W '{EF2}, A [{FE}]) = ¢ < &} forms a partial two point set.
To see that this recursion is possible let us assume that the construction at the step
§ < wi is done. Now let us enumerate {F : n < £ Ai € 2} = {B, : n € w} by
w. If the assumptions in condition (2) is not fulfilled then choose any Fg almost
disjoint with every Ff] for n < £ and ¢ € 2 what is possible since |£| = w. Now, let
us assume that the assumption of (2) is fulfilled. We show that

(%) (Vnew)(Vg<pe)@m>n)(Fr<q) riFmere\(BoU...By,).
Let us fix any n € w and ¢ < pe. By assumption p¢ IF |7e N (Bo U ... By)| < w. So
pel-(3m >n) mer\ (ByU...UBy,).

q is stronger than pe, so it forces the same sentence. Now, we can find a stronger
condition r < ¢ and positive integer m > n such that

rikmer\ (BoU...By).

This finishes the proof of ().
Now let us enumerate the set w x {¢ € Fn(w,2): ¢ < pe} ={(n;,q;) : j <w}.
Then for every j < w there exist m; € w and r; < g; such that n; < m; and

rj ”—mj€7'§\(B()U...Bn].).

Let F¢ = {m; : j <w}. Then F}NF} is finite, so ye = h™'[{ F{ }] is a real different
from the other coordinates appeared in previous step construction.

Now we will construct the first coordinate of the new point. To do this, set
Ace = {(h"Y(F)), k" (F})) : n < €} C R% Denote by L.¢ the set of all lines
I C R? on the real plane such that [l N A<¢| = 2. Let observe that the set

Y={zeR: (3leLlce)(z,ye) €l}.

is countable. Let us enumerate Y = {z, : n < w}. Now, consider the following
sequence Cy, = h(z,), n € w.

To define the set F, 50 we will use the diagonal argument. Let us arrange elements
of each set C), = {¢} : i € w} in increasing sequence and let us define the increasing
sequence (d,)ne. of nonnegative integers:

d, = max{c} : i <n}.
Now, let us choose an increasing sequence (my,)ne,, such that for every n € w we
have
e d, <m, and
° mnEw\FguBOU...UBn.
Set FY = {my : n € w}. It is easy to see that
(1) FQ # C, for every n € w,
(2) |[FY N B,| <w for every n € w,
(3) [FPNF <w.
The first property ensures that the set A ¢U {(hil(Fg), h’l(Fg))} doesn’t contain

three collinear points. The second and third properties implies that the set {Fé :
n < &Ai € 2} forms almost disjoint family.
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Our construction of the sequence (Fg0 1€ < w) and (Fg1 : &€ < wy) finished. Tt
remains to prove that

Fpnw,2) {FE € <wi}U{F}: & <w} is mad family.

If not then there exists condition p € Fn(w,2) and nice name 7 € VF»«:2) for
element of P(w) such that

plE (V€ <wi)(V(i €2) |t NFY| < w.

There exists £ < w; such that (p, 7) = (pe, 7¢). So, the assumptions in the condition
(2) is fulfilled. We know that 7 witness that there exists ¢ < p and n € w such that

qIFTﬁFgCn.

From the other hand, there exists r < ¢ and m > n such that rIFm € 7N Fg or
there exists ' < ¢ and m’ > n such that ' IFm/ € TN Fgl, a contradiction. O

Theorem 7.4. Let us fiz a standard Borel bijection h : R — [w]“. It is consistent
with ZFC+-CH that there exists a partial two point set A such that h[m [A]Ums[A]]
forms a tower of size wy.

We will omit the proof because it is very similar to the proof of Theorem 7.3.

Theorem 7.5. It is consistent with ZFC + ~CH that there exists a partial two
point set C C R? of size wy such that C is a Luzin set and

(3A e A)(VD € [C]**) A+ D =R2

Proof. Let us start with V E CH. Consider the generic extension Ve, : a < ws]
obtained by adding w, independent Cohen reals. We can assume that c, € R? for
every a < wg. Set C' = {c, : a < wa}.

C is a partial two point set. Indeed, take any line [ which intersects two different
points of C: cq, cg. Take any v € wy \ {«, B}. ¢, is a Cohen real over Vc,, ¢g] and
[ is a meager set coded in Vcq, cg]. So, ¢y ¢ 1.

C'is a Luzin set. Take any Borel meager set M from Ve, : & < ws]. M is coded
in Ve, : a € I] for some countable I. So, M N{cy :a €wy \ I} =10.

Now, let us fix the Marczewski decomposition: R? = AU B, where A € ¥/,
B € # and ANB = (. Let us recall that A, B are coded in V. Take any
D C C of size wy. Take any x € R? (in V]cy : @ < wol]). zis in Ve, @ @ € J]
for some countable J. So, x — B is a meager set coded in Vic, : a € J]. Take
¢ € D\{co : « € J}. Then ¢ ¢ © — B. So, x € A+ c. This shows that
R?*C A+ D. O

In a similar way one can show the following result.

Theorem 7.6. It is consistent with ZFC + —~CH that there exists a partial two
point set R C R? of size wy such that R is a Sierpiriski set and

(3B € #)(YD € [R]“*) B+ D = R?%.
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