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ACHIEVEMENT SETS OF
CONDITIONALLY CONVERGENT SERIES

BY

ARTUR BARTOSZEWICZ, SZYMON GŁĄB and JACEK MARCHWICKI (Łódź)

Abstract. Considering the sets of subsums of series (or achievement sets) we show
that for conditionally convergent series the multidimensional case is much more compli-
cated than that of the real line. Although we are far from the full topological classification
of such sets, we present many surprising examples and capture the ideas standing behind
them in general theorems.

1. Introduction. S. Kakeya [Ka] was probably the first one to consider
topological properties of subsums of absolutely convergent series of real num-
bers. For an absolutely summable sequence (xn), we call the set

A(xn) =
{ ∞∑
n=1

εnxn : (εn) ∈ {0, 1}N
}

the set of subsums or the achievement set of (xn) (or of the series
∑
xn) [J].

Of course, for (xn) with almost all terms equal to zero, the set A(xn) is finite.
Kakeya has shown:

Theorem 1.1. For an absolutely summable sequence (xn) with infinitely
many nonzero terms:

• A(xn) is a compact perfect set.
• If |xn| >

∑
k>n |xk| for almost all n then A(xn) is homeomorphic to the

Cantor set (after M. Morán we call such sequences quickly convergent).
• If |xn| ≤

∑
k>n |xk| for almost all n then A(xn) is a finite union of closed

intervals. Moreover the implication can be reversed for nonincreasing se-
quences (|xn|).

Kakeya conjectured that Cantor-like sets and finite unions of closed in-
tervals are the only possible achievement sets for sequences (xn) ∈ `1 \ c00.
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Kakeya’s results were rediscovered many times and his conjecture was re-
peated, even after the first counterexamples were given. The first coun-
terexamples were published by Văınshtĕın and Shapiro [VS], Ferens [F] and
Guthrie and Nymann [GN]. Thanks to Guthrie, Nymann and Saenz [GN, NS]
we know that the achievement set of an absolutely summable sequence can
be a finite set, a finite union of intervals, homeomorphic to the Cantor set, or
a so called Cantorval. A Cantorval is a set homeomorphic to the union of the
Cantor set and sets which are removed from the unit segment at even steps
of the Cantor set construction. That gives a partition of `1 into four disjoint
sets. Topological and algebraic properties of these sets were recently consid-
ered in [BBGS1, BBGS2]. Some sufficient conditions for a given sequence
to be a Cantorval were recently described in [BBFS, BFS, J]. The connec-
tions between achievement sets of some absolutely summable sequences and
self-similar sets were observed in [J].

If
∑∞

n=1 xn is an absolutely convergent series in a Banach space, then the
function {0, 1}N 3 (εn) 7→

∑∞
n=1 εnxn maps continuously the Cantor space

{0, 1}N onto A(xn) (see for example [BG]). In particular, A(xn) is compact.
We will prove that this function is also continuous if the series

∑∞
n=1 xn is

unconditionally convergent. This will follow immediately from Lemma 1.2
below. It is well-known [KK, Theorem 1.3.2, p. 10] that a series

∑∞
n=1 xn in

a Banach space is unconditionally convergent if and only if each series of the
form

∑
n∈A xn, A ⊆ N, is convergent.

Lemma 1.2. Assume that
∑∞

n=1 xn is an unconditionally convergent
series in a Banach space X. Then for every ε > 0 there is N ∈ N such
that for every set A ⊆ N, ∥∥∥ ∑

k∈A\{1,...,N}

xk

∥∥∥ ≤ ε.
Proof. Suppose to the contrary that there is ε > 0 such that for every N

there is A ⊆ {N + 1, N + 2, . . . } with∥∥∥∑
k∈A

xk

∥∥∥ > ε.

For N = 1 find A1 with ‖
∑

k∈A1
xk‖ > ε. There is a finite set F1 ⊆ A1

with ‖
∑

k∈F1
xk‖ > ε. In the second step for N = maxF1 find A2 ⊆ {N + 1,

N+2, . . . } with ‖
∑

k∈A2
xk‖ > ε. As before we take a finite set F2 ⊆ A2 with

‖
∑

k∈F2
xk‖ > ε. Proceeding inductively, we produce finite sets F1, F2, . . .

such that maxFi < minFi+1 and ‖
∑

k∈Fi xk‖ > ε. Set A =
⋃
i≥1 Fi. Then by

the Cauchy condition the series
∑

n∈A xn diverges, which is a contradiction.

One can also define the achievement sets for all sequences in Banach
spaces. Then one should only consider those sequences (εn) ∈ {0, 1}N for
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which
∑∞

n=1 εnxn is convergent. We say that a series
∑∞

n=1 xn is potentially
conditionally convergent if it has a conditionally convergent rearrangement∑∞

n=1 xσ(n). On the real line, this means that both the series of positive
and that of negative terms are divergent. Note that the difference between
potentially conditionally convergent series and conditionally convergent se-
ries is slight: a potentially conditionally convergent series can be divergent.
However, this notion allows us to formulate the following characterization.

Theorem 1.3. For sequences of reals with limn→∞ xn = 0:

•
∑∞

n=1 xn is potentially conditionally convergent if and only if A(xn) = R.
• The subseries of negative terms is convergent and the subseries of positive
terms is divergent (or vice versa) if and only if A(xn) is a half-line.

For simple proofs see for example [BFPW, J, N1]. If (xn) does not con-
verge to zero, then A(xn) is always an Fσ-set [J]. So, for conditionally conver-
gent series of reals the achievement set A(xn) is R, exactly as the sum range
SR(xn), the set of all rearrangements

∑∞
n=1 xσ(n), by the classical Riemann

Theorem on permutations of conditionally convergent series.
The Riemann Theorem can be generalized to finite-dimensional spaces.

Before we state it precisely let us consider a couple of examples. Note that
SR((−1)n/n, (−1)n/n) = {(x, x) : x ∈ R}, SR((−1)n/n, 0) = R × {0} and
SR((−1)n/n, (−1)n/

√
n) = R2 (the latter is not obvious). This shows that a

straightforward generalization of the Riemann Theorem is not true. However,
we have the following theorem, the proof of which can be found in [KK].

Theorem 1.4 (Steinitz). Let
∑∞

n=1 xn be a conditionally convergent se-
ries in Rm. Then the set SR(xn) = {

∑∞
n=1 xσ(n) : σ ∈ S∞} of all convergent

rearrangements of
∑∞

n=1 xn is an affine subspace of Rm. More precisely, if
Γ = {f ∈ (Rm)∗ :

∑∞
n=1 |f(xn)| < ∞}, and Γ⊥ = {x ∈ Rm : f(x) = 0 for

all f ∈ Γ} is the annihilator of Γ , then

SR(xn) =

∞∑
n=1

xn + Γ⊥.

The aim of the present paper is to show that in multidimensional spaces
A(xn) can essentially differ from SR(xn). We observe e.g. that for the achieve-
ment sets A(xn) of conditionally convergent series in R2 the following situ-
ations are possible:

• A(xn) ∩ SR(xn) can be a singleton (Example 3.3), and it is always non-
empty;
• A(xn) can be the graph of a function (Example 3.10);
• A(xn) can be a dense set in R2 with empty interior (Example 3.13);
• A(xn) can be neither an Fσ nor a Gδ-set (Theorem 3.9);
• A(xn) can be an open set 6= R2 (Theorem 4.2);
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On the other hand, to obtain regular achievement sets let us make a simple
observation. Let X be a Banach space. Suppose A = A(xn) and B = A(yn)
are achievement sets in X. Then

A×B = A((x1, 0), (0, y1), (x2, 0), (0, y2), . . .).

If T : X → Y is a bounded linear operator from X to some other Banach
space Y , then

T (A) = A(Tx1, Tx2, . . . ).

Now take any conditionally convergent series
∑∞

n=1 xn and absolutely conver-
gent series

∑∞
n=1 yn, both on the real line. Then A(xn) = R and A(yn) = C

is a compact set. By the above observation there are conditionally convergent
series on the plane whose achievement sets equal R×C, R2 or any rotation
of R× C.

As far as we know, the achievement sets of series in multidimensional
spaces were considered in a few papers only. For example, Morán [M1, M2]
studied quickly convergent series. The series considered by Bartoszewicz and
Głąb [BG] are also absolutely convergent. So our paper is probably the first
one on achievement sets of conditionally convergent series in Rn for n > 1. On
the other hand, properties of sum range sets are well-studied [KK]. A strong
suggestion to consider achievement sets of series in multidimensional spaces
was given by Nitecki in his nice lecture [N1] (a shorter version of this survey
is [N2]).

2. Cardinality of achievement sets. In this section we study the
cardinality of achievement sets in Banach spaces. Then we prove that the
achievement set of a conditionally convergent series is perfectly dense in itself,
that is, for any point x which can be achieved and any ε > 0, the intersection
of the achievement set and the ball B(x, ε) contains a perfect set.

Proposition 2.1. Let X be a Banach space and let (xn) be a sequence
of elements of X.

(i) If there are finitely many nonzero xn’s then A(xn) is finite.
(ii) If there are infinitely many nonzero xn’s and there is δ > 0 such that
‖xk‖ ≥ δ for any nonzero xk then A(xn) is infinite and countable.
Moreover if X is finite-dimensional then A(xn) is unbounded.

(iii) A(xn) contains a perfect set otherwise.

Proof. (i) Let xk1 , . . . , xkm be all the nonzero terms of (xn). Then
card A(xn) ≤ 2m.

(ii) Since zero terms do not affect the achievement set, we may assume
that (xn) consists of nonzero elements. First, we consider the case of X = Rk
with the supremum norm. Then xn = (xn(1), . . . , xn(k)). Without loss of
generality we may assume that the set Fj = {n ∈ N : xn(j) ≥ δ} is infinite for
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some j ≤ k. Hence
∑

n∈Fj xn(j) =∞, so the achievement set is unbounded
and therefore infinite.

In general, if {xn : n ∈ N} spans a finite-dimensional space, then we may
assume that X is finite-dimensional and therefore isomorphic to Rk with the
supremum norm. If {xn : n ∈ N} spans an infinite-dimensional space, then
{xn : n ∈ N} is an infinite set contained in A(xn).

To see that A(xn) is countable, note that no subsequence of xn converges
to zero. Therefore every element of A(xn) is a sum of finitely many xn’s.

(iii) The negation of the first two conditions means that there exists an
infinite subsequence (xnl) of nonzero terms which tends to 0. We may assume
‖xnl+1

‖ < ‖xnl‖/3 for every l ∈ N. Then {0, 1}N 3 (εl)
f7→
∑∞

l=1 εlxnl is
injective: To see this, assume that εj 6= εj for some j ∈ N. We have∥∥∥ ∞∑

l=j+1

εlxnl −
∞∑

l=j+1

εlxnl

∥∥∥ =
∥∥∥ ∞∑
l=j+1

(εl − εl)xnl
∥∥∥ ≤ ∞∑

l=j+1

‖xnl‖

≤ 3
2‖xnj+1‖ < ‖xnj‖.

Hence∥∥∥ ∞∑
l=j

εlxnl −
∞∑
l=j

εlxnl

∥∥∥ =
∥∥∥εjxnj − εjxnj +

∞∑
l=j+1

εlxnl −
∞∑

l=j+1

εlxnl

∥∥∥
≥ ‖εjxnj − εjxnj‖ −

∥∥∥ ∞∑
l=j+1

εlxnl −
∞∑

l=j+1

εlxnl

∥∥∥
= ‖xnj‖ −

∥∥∥ ∞∑
l=j+1

εlxnl −
∞∑

l=j+1

εlxnl

∥∥∥ > 0.

This implies that there exists r < j such that εr 6= εr. After finitely many
steps we get ε1 6= ε1. But∥∥∥ ∞∑

l=1

εlxnl −
∞∑
l=1

εlxnl

∥∥∥ ≥ ‖xn1‖ −
∥∥∥ ∞∑
l=2

εlxnl −
∞∑
l=2

εlxnl

∥∥∥ > 0.

Since
∑∞

l=1 xnl is absolutely convergent, the mapping f is continuous. Hence
A(xnl) ⊆ A(xn) is a continuous injective image of the Cantor space {0, 1}N.

Proposition 2.2. Let
∑∞

n=1 xn be a conditionally convergent series in
a Banach space X. Then A(xn) is perfectly dense in itself.

Proof. Note that the set {
∑

n∈F xn : F is finite} is dense in A(xn). Let
x ∈ A(xn) and ε > 0. There is a finite set F such that ‖

∑
n∈F xn−x‖ < ε/2.

Using the same method as in the proof of Proposition 2.1(iii), we find a
subsequence xnl of xn such that {nl : l ∈ N}∩F = ∅,

∑∞
l=1 ‖xnl‖ < ε/2 and

A(xnl) is a perfect set. Then
∑

n∈F xn + A(xnl) ⊆ B(x, ε) ∩A(xn).
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3. Achievement sets of conditionally convergent series. We start
this section by considering the instructive example of the conditionally con-
vergent series

∑∞
n=1((−1)n+1/n, 1/2n) in the plane. The achievement set of

this series has several properties which show that the theory of achievement
sets of conditionally convergent series in multidimensional spaces is much
more complicated and interesting than that of one-dimensional series. The
analysis of this example will lead us to some general observations:

• First we note in Proposition 3.1 that every conditionally convergent series
in Rm either has sum range Rm (first type series), or it is, up to linear
isometry, of the form

∑∞
n=1(xn, yn) where xn ∈ Rk, yn ∈ Rm−k,

∑∞
n=1 xn

is conditionally convergent with sum range Rk, and
∑∞

n=1 yn is absolutely
convergent (second type series).
• We will observe that the closure of A((−1)n+1/n, 1/2n) contains the sum

range SR((−1)n+1/n, 1/2n). This is a general fact in every Banach space
(Lemma 3.2).
• We will observe that the closure of A((−1)n+1/n, 1/2n) equals R×A(1/2n).

A similar general fact is true in Euclidean spaces (Theorem 3.5).
• The achievement set A((−1)n+1/n, 1/2n) is not closed. This phenomenon

is generalized in Theorem 3.7.
• The series

∑∞
n=1(2/3

n, (−1)n+1/n), considered in Example 3.10, a slight
modification of that from Example 3.3, has an achievement set which
is neither Fσ nor Gδ. A wide class of series with that property is given
in Theorem 3.9. In the proof we observe that the achievement set of a
conditionally convergent series is always an analytic (or Σ1

1) set.

The series from Example 3.3 is of the first type. By Lemma 3.2 the achieve-
ment set of a series of the second type is dense in the whole space. One
can easily give an example of a series whose achievement set is actually the
whole space. It is much harder to give an example of a series of the second
type whose achievement set is smaller. We will present it in Example 3.13;
its achievement set will be a null subset of the plane.

The following observation, which is probably mathematical folklore, al-
lows us to consider only two types of conditionally convergent series in Eu-
clidean spaces.

Proposition 3.1. Let
∑∞

n=1 xn be a conditionally convergent series inRm
such that dim(Γ⊥) = k < m. Then there exists an isomorphism (T1, T2)
∈ L(Rm,Rk×Rm−k) such that

∑∞
n=1 T1(xn) is conditionally convergent with

SR(
∑∞

n=1 T1(xn)) = Rk and
∑∞

n=1 T2(xn) is absolutely convergent in Rm−k.

Proof. Let k = dimΓ⊥ and let Y be the orthogonal to Γ⊥ so that Rm =
Γ⊥ ⊕ Y . Let e1, . . . , em be the standard basis of Rm and let e′1, . . . , e′m be
an orthogonal basis of Γ⊥ ⊕ Y such that Γ⊥ = span{e′1, . . . , e′k} and Y =
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span{e′k+1, . . . , e
′
m}. Let T : Rm → Γ⊥ ⊕ Y be a linear isomorphism such

that T (ei) = e′i for every i = 1, . . . ,m. For x =
∑m

i=1 x(i)ei let T1(x) =∑k
i=1 x(i)e′i and T2(x) =

∑m
i=k+1 x(i)e′i. Then T = (T1, T2). Let fi(x) = x(i).

Then fi ∈ Γ for i > k, which means that
∑∞

n=1 ‖T2(xn)‖ <∞.
Let Λ = {f ∈ (Γ⊥)∗ :

∑∞
n=1 |f(T1(xn))| < ∞}. Let π≤k : Rm → Rk be

the projection onto the first k coordinates. For f ∈ (Γ⊥)∗ define f̃ ∈ (Rm)∗

by f̃(x) = f(π≤k(x)). Then f ∈ Λ ⇔ f̃ ∈ Γ ⇔ f̃ = 0 ⇔ f = 0. Thus
Λ = {0}, and by the Steinitz Theorem, SR(T1(xn)) = Λ⊥ = Rk.

Note that a linear isomorphism T does not change the geometrical or
topological properties of subsets of Rm. Therefore we will assume that a
conditionally convergent series in Rm either can be rearranged to get any
point of Rm, or it is of the form

∑∞
n=1(xn, yn) where xn ∈ Rk, yn ∈ Rm−k,

SR(xn) = Rk and
∑∞

n=1 yn is absolutely convergent.
The following lemma shows a relation between the sum range and the

achievement set of a series.

Lemma 3.2. Let
∑∞

n=1 xn be a conditionally convergent series in a Ba-
nach space X. Then SR(xn) ⊆ A(xn).

Proof. Let ε > 0 and x ∈ SR(xn). Then x =
∑∞

n=1 xσ(n) for some
σ ∈ S∞. One can find a natural number k such that ‖x−

∑k
n=1 xσ(n)‖ < ε.

Denote A = {m : σ(n) = m, n ≤ k} = σ({1, . . . , k}) and define εn = 1

for n ∈ A and εn = 0 otherwise. Then
∑k

n=1 xσ(n) =
∑∞

n=1 εnxn, so
‖x−

∑∞
n=1 εnxn‖ < ε. Hence x ∈ A(xn).

Example 3.3. Let xn = (x
(1)
n , x

(2)
n ) = ((−1)n+1/n, 1/2n) ∈ R2. Then

clearly
∑∞

n=1 xn = (log 2, 1). By the Riemann Theorem for every x ∈ R one
can find σ ∈ S∞ such that x =

∑∞
n=1 x

(1)
σ(n). Since permutating indices does

not affect the sum of an absolutely convergent series, we have
∑∞

n=1 x
(2)
σ(n) = 1.

Hence SR(xn) = R × {1}. Let D = {
∑k

n=1 εn/2
n : (εn) ∈ {0, 1}k, k ∈ N}

be the set of all dyadic numbers in [0, 1). Then for every d ∈ D there are
k ∈ N and (εn) ∈ {0, 1}k with d =

∑k
n=1 εn/2

n. Set Fd := {n ≤ k : εn = 1}.
After removing finitely many terms from a conditionally convergent series,
we still have a conditionally convergent series. Therefore SR((xn)n∈N\Fd) =
R× {1− d}.

From Lemma 3.2 we get SR((xn)n∈N\Fd) ⊆ A((xn)n∈N\Fd) ⊆ A(xn). Since
d ∈ D ⇔ 1 − d ∈ D, we have

⋃
d∈D(R × {d}) ⊆ A(xn), and consequently⋃

d∈D(R× {d}) ⊆ A(xn). But D is dense in [0, 1], so⋃
d∈D

(R× {d}) = R×
⋃
d∈D
{d} = R×D = R× [0, 1].
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Thus R× [0, 1] ⊆ A(xn). The reverse inclusion is obvious; therefore A(xn) =
R× [0, 1]. Suppose (z, 1) ∈ A(xn). The only way to get

∑∞
n=1 εnx

(2)
n = 1 for

some (εn) ⊆ {0, 1}N is to take εn = 1 for each n ∈ N. Hence z = log 2. This
proves that the only point with second coordinate 1 which belongs to A(xn)
is (log 2, 1). Thus A(xn) is not closed. Finally, recall that SR(xn) = R×{1}.
Therefore A(xn) ∩ SR(xn) = {(log 2, 1)}.

Lemma 3.2 implies that the achievement sets of conditionally convergent
series in finite-dimensional spaces are unbounded. The situation changes in
infinite-dimensional Banach spaces.

Example 3.4. Let (en) be the standard basis of c0. Let (xn) be the
sequence

e1,−e1, 12e2,−
1
2e2,

1
2e2,−

1
2e2,

1
3e3,−

1
3e3,

1
3e3,−

1
3e3,

1
3e3,−

1
3e3, . . . .

Then
∑∞

n=1 xn is convergent to zero, while its rearrangement

e1 − e1 + 1
2e2 + 1

2e2 −
1
2e2 −

1
2e2 + 1

3e3 + 1
3e3 + 1

3e3 −
1
3e3 −

1
3e3 −

1
3e3 + · · ·

is divergent, since the sequence of its partial sums contains each ei. Since
the projection of the series on each coordinate contains only finitely many
nonzero terms and a finite sum does not change under rearrangements,
we have SR(

∑∞
n=1 xn) = {0}. Let Xn = {k/n : k ∈ [−n, n] ∩ Z}. Note

that A(
∑∞

n=1 xn) = (
∏∞
n=1Xn) ∩ c0. Therefore A(

∑∞
n=1 xn) is closed and

bounded.

It can happen that SR(xn) = A(xn). For example:

• A((−1)n/n, 0) = R× {0} = SR((−1)n/n, 0).
• A((−1)n/n, (−1)n/n) = {(x, x) ∈ R} = SR((−1)n/n, (−1)n/n).
• If

∑∞
n=1 xn and

∑∞
n=1 yn are conditionally convergent on the real line,

then
A((x1, 0), (0, y1), (x2, 0), (0, y2), . . . )

= SR((x1, 0), (0, y1), (x2, 0), (0, y2), . . . ) = R2.

Note that if
∑∞

n=1 xn is a conditionally convergent series in a Banach
space X, then A(xn) and SR(xn) intersect, namely

∑∞
n=1 xn ∈ A(xn) ∩

SR(xn). Note that in Example 3.3, A(xn) ∩ SR(xn) is actually a singleton.
Using the idea from Example 3.3 we will prove the following.

Theorem 3.5. Let (xn) ⊂ Rk be such that
∑∞

n=1 xn is conditionally
convergent with SR(xn) = Rk, and let (yn) ⊂ Rm be such that

∑∞
n=1 yn is

absolutely convergent. Then A(xn, yn) = Rk ×A(yn).

Proof. “⊆”. It is easy to see that A(xn, yn) ⊆ A(xn)×A(yn). Therefore

A(xn, yn) ⊆ A(xn)×A(yn) = A(xn)×A(yn).
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Since SR(xn) = Rk, by Lemma 3.2 we get A(xn) = Rk. By the absolute
convergence of

∑∞
n=1 yn the set A(yn) is compact, so A(yn) = A(yn).

“⊇”. Let (x, y) ∈ Rk × A(yn) and ε > 0. Since y =
∑∞

n=1 εnyn for some
(εn) ∈ {0, 1}N, there exists kε ∈ N such that ‖y −

∑N
n=1 εnyn‖ < ε for

every N ≥ kε. Since
∑∞

n=1 yn is absolutely convergent, we may assume that∑∞
n=kε+1 ‖yn‖ < ε. Let K = {n ≤ kε : εn = 1} = {k1 < · · · < kl}. Define

σ(n) = kn for n ∈ {1, . . . , l}.
Note that if SR(xn) = Rk, then SR((xn)n≥kε+1) = Rk as well. In par-

ticular x −
∑l

n=1 xkn ∈ SR((xn)n≥kε+1). Therefore there exist M ∈ N and
a one-to-one mapping τ : {kε + 1, . . . ,M} → {kε + 1, kε + 2, . . .} such that
‖x−

∑l
n=1 xkn−

∑M
n=kε+1 xτ(n)‖ < ε. Enumerate the range τ({kε+1, . . . ,M})

as {kl+1 < · · · < kl+l′} and define

δn =


εn n ≤ kε,
1 n = kl+i for i ∈ {1, . . . , l′},
0 otherwise.

Then∥∥∥ ∞∑
n=1

εnyn −
∞∑
n=1

δnyn

∥∥∥ =
∥∥∥ ∞∑
n=kε+1

εnyn −
∞∑

n=kε+1

δnyn

∥∥∥
=
∥∥∥ ∞∑
n=kε+1

(εn − δn)yn

∥∥∥ ≤ ∞∑
n=kε+1

‖yn‖ < ε.

Hence ‖y −
∑∞

n=1 δnyn‖ < ε. Moreover∥∥∥x− ∞∑
n=1

δnxn

∥∥∥ =
∥∥∥x−∑

n≤kε

δnxn −
l′∑
n=1

δkl+nxkl+n

∥∥∥
=
∥∥∥x−∑

n≤kε

εnxn −
l+l′∑
n=l+1

xkn

∥∥∥ =
∥∥∥x−∑

n∈K
xn −

l+l′∑
n=l+1

xkn

∥∥∥
=
∥∥∥x− l∑

n=1

xkn −
M∑

n=kε+1

xτ(n)

∥∥∥ < ε.

Since all norms in a finite-dimensional space are equivalent, there is C > 0
such that∥∥∥(x, y)−

∞∑
n=1

δn(xn, yn)
∥∥∥ ≤ C max

{∥∥∥x− ∞∑
n=1

δnxn

∥∥∥,∥∥∥y − ∞∑
n=1

δnyn

∥∥∥} < Cε.

Thus (x, y) ∈ A(xn, yn), which finishes the proof.
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Now, we present a sufficient condition for a conditionally convergent series
to have an achievement set which is not closed. Here we again use the idea
from Example 3.3.

Lemma 3.6. Let
∑∞

n=1 yn be an absolutely convergent series in Rm with
yn 6= 0 for each n ∈ N. Then for every extreme point a of A(yn), there is a
unique sequence (εn) ∈ {0, 1}N such that a =

∑∞
n=1 εnyn.

Proof. We will show that a is achieved for a unique (εn) ∈ {0, 1}N. Sup-
pose on the contrary that a =

∑∞
n=1 εnyn =

∑∞
n=1 δnyn for two distinct

sequences (εn) and (δn), and set M = {n ∈ N : εn 6= δn}. Divide M into
Mε = {n ∈ M : εn = 1, δn = 0} and Mδ = {n ∈ M : εn = 0, δn = 1}. Then
a =

∑
n∈Mε

yn +
∑

n∈Mc εnyn =
∑

n∈Mδ
yn +

∑
n∈Mc εnyn, so

a =
1

2

∑
n∈Mc

εnyn +
1

2

(∑
n∈M

yn +
∑
n∈Mc

εnyn

)
=

1

2
b+

1

2
c.

As b =
∑

n∈Mc εnyn and c =
∑

n∈M yn +
∑

n∈Mc εnyn, we have b, c ∈ A(yn).
Since a is an extreme point of A(yn), we get b = c, so

∑
n∈M yn = 0. Since

each yn is nonzero, M has at least two elements. Assume that n0 ∈ M ;
then yn0 +

∑
l∈M\{n0} yl = 0. Define b′ = b + yn0 and c′ = c − yn0 . Then

b′, c′ ∈ A(yn). We have a = 1
2b
′ + 1

2c
′, and using again the assumption that

a is an extreme point, we get b′ = c′. But then yn0 =
∑

l∈M\{n0} yl and∑
n∈M yn = 0, and so yn0 = 0, a contradiction.

Theorem 3.7. Let
∑∞

n=1 xn be a conditionally convergent series in Rk
with SR(xn) = Rk, and

∑∞
n=1 yn an absolutely convergent series with yn 6= 0

for each n ∈ N. Then A(xn, yn) is not closed.

Proof. Let a be an extreme point of A(yn); such a point exists be-
cause A(yn) is compact. By Lemma 3.6, a has a unique representation
a =

∑∞
n=1 εnyn. Hence, the a-section of A(xn, yn) is a singleton if

∑∞
n=1 εnxn

converges, and is empty otherwise. On the other hand, {(x, a) : x ∈ Rk} ⊆
Rk ×A(yn) = A(xn, yn). Hence, A(xn, yn) is not closed.

Now, we will prove that the achievement set of a conditionally convergent
series need not be Fσ or Gδ. This will apply to the series from Example 3.10.

Let us start by recalling some notions from descriptive set theory. A topo-
logical space is Polish if it is completely metrizable and separable. An Fσδ
subset A of a Polish spaceX is called Π0

3-complete if for any zero-dimensional
Polish space Y and for any Fσδ subset B of Y there is a continuous func-
tion f : Y → X such that f−1(A) = B. It is known that Π0

3-complete sets
are Fσδ but not Gδσ. To prove that an Fσδ subset C of a Polish space Z
is Π0

3-complete, it is enough to take a known example A of a Π0
3-complete

subset of a Polish space X and find a continuous function g : X → Z such
that g−1(C) = A. For more information, see [Ke].
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Proposition 3.8. Let
∑∞

n=1 xn be a conditionally convergent series in R
such that A(xn) = R. Then E := {(εn) ∈ 2N :

∑∞
n=1 εnxn converges} is a

Π0
3-complete subset of {0, 1}N.

Proof. Note that

(εn) ∈ E ⇔ ∀k ∈ N ∃l ∈ N ∀M > m ≥ l
(∣∣∣ M∑

n=m

εnxn

∣∣∣ ≤ 1

k

)
.

Therefore E is an Fσδ subset of 2N.
To prove that E is Π0

3-complete, we will use the fact that the set

C3 :=
{
v ∈ NN : lim

n→∞
v(n) =∞

}
is Π0

3-complete (for details see [Ke, Section 23A]). It is enough to construct
a continuous function ψ : NN → {0, 1}N such that v ∈ C3 ⇔ ψ(v) ∈ E.
The spaces {0, 1}N of all 0-1 sequences and NN of all sequences of natural
numbers are considered with the metric d(x, y) = 2−n where n = min{k :
x(k) 6= y(k)}.

One can inductively define sets Fn = Fn(v) and Hn = Hn(v) such that
F0 = H0 = ∅ and for every n ≥ 1:

(i) Fn < Hn < Fn+1, that is, maxFn < minHn and maxHn < minFn;
(ii) |

∑
k∈F1∪H1∪···∪Fn xk| < 2−n;

(iii) |
∑

k∈F1∪H1∪···∪Fn∪Hn xk − 2−v(n)| < 2−n;
(iv) xk < 0 for k ∈

⋃
n≥1 Fn, and xk > 0 for k ∈

⋃
n≥1Hn.

Note that the above construction can be done uniformly in the sense that if
v(i) = v′(i) for i ≤ n, then Fi(v) = Fi(v

′) and Hi(v) = Hi(v
′) for i ≤ n.

Now, we define ψ : NN → {0, 1}N as follows. Let ψ(v) be the characteristic
function of

⋃∞
n=1(Fn(v) ∪ Hn(v)). Since the construction is uniform, for

v, v′ ∈ NN such that v(i) = v′(i) for i ≤ n we have d(ψ(v), ψ(v′)) ≤ 2−n.
Therefore ψ is continuous. We will prove that v ∈ C3 ⇔

∑∞
n=1 ψ(v)(n)xn

is convergent.
If v /∈ C3, then there are m ∈ N and an infinite set L ⊆ N such that

v(l) = m for all l ∈ L. Thus by construction, the series
∑∞

n=1 ψ(v)(n)xn
diverges, since the sequence (

∑N
n=1 ψ(v)(n)xn) of partial sums has, by (ii)

and (iii), two accumulation points, 0 and 2−m.
If v ∈ C3, then 2−v(n) → 0. Let ε > 0. There is l ∈ N such that

2−v(n), 2−n < ε/2 for n ≥ l. Let n ≥ l. By (ii) and (iii) we obtain∣∣∣ ∑
k∈F1∪H1∪···∪Fn

xk

∣∣∣ =
∣∣∣maxFn∑
k=1

ψ(v)(k)xk

∣∣∣ < 2−n < ε
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and∣∣∣ ∑
k∈F1∪H1∪···∪Fn∪Hn

xk−2−v(n)
∣∣∣ =

∣∣∣maxHn∑
k=1

ψ(v)(k)xk−2−v(n)
∣∣∣ < 2−n+2−v(n)<ε.

By (iv) we also have |
∑M

k=1 ψ(v)(k)xk| < 2−n for every M ≥ maxHl. Thus∑∞
n=1 ψ(v)(n)xn converges to zero.

A result similar to Proposition 3.8 was proved by Cohen [C]: if
∑∞

n=1 xn
is a conditionally convergent series in Rn, then the set of all permutations σ
such that

∑∞
n=1 xσ(n) converges is a Π0

3-complete subset of S∞. The example
of a Π0

3-complete set in Proposition 3.8 will be used to prove the following.

Theorem 3.9. Let
∑∞

n=1 xn be a conditionally convergent series in R,
and let

∑∞
n=1 yn be an absolutely convergent series in R such that the function

{0, 1}N 3 (εn) 7→
∑∞

n=1 εnyn is one-to-one. Then A(xn, yn) is a Borel subset
of R2 which is neither Gδ nor Fσ.

Proof. Note that

(x, y) ∈ A(xn, yn) ⇔

∃(εn) ∈ 2N ∀m ∃l ∀k ≥ l
(∣∣∣x− k∑

n=1

εnxn

∣∣∣ < 1

m
and

∣∣∣y − k∑
n=1

εnyn

∣∣∣ < 1

m

)
,

which shows that A(xn, yn) is Σ1
1 as a projection of a Borel set, and

(x, y) ∈ A(xn, yn) ⇔

∃!(εn) ∈ 2N ∀m ∃l ∀k ≥ l
(∣∣∣x− k∑

n=1

εnxn

∣∣∣ < 1

m
and

∣∣∣y − k∑
n=1

εnyn

∣∣∣ < 1

m

)
,

which shows that A(xn, yn) is Π1
1 [Ke, 18.11]. The first equivalence follows

from the definition of achievement set, and the second by the injectivity of
(εn) 7→

∑∞
n=1 εnyn. By the Suslin Theorem, A(xn, yn) is Borel.

By Theorem 3.5, A(xn, yn) is dense in R×A(yn). However, every horizon-
tal section of A(xn, yn) consists of at most one point. Suppose that A(xn, yn)
is a Gδ. Then it would be a comeager subset of R × A(yn), and therefore
almost all of its horizontal sections in the sense of category would be comea-
ger in R. That would be a contradiction since each of the horizontal sections
has at most one point.

Suppose that A(xn, yn) is an Fσ subset of R2. Then it would be a count-
able union of compact sets, and consequently its projection proj2(A(xn, yn))
would be a countable union of compact sets, that is, an Fσ set. But
proj2(A(xn, yn)) is homeomorphic to the set E from Lemma 3.8, which is
not Fσ; a contradiction.
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The next example is a slight modification of Example 3.3.

Example 3.10. Let (xk, yk) = (2/3k, (−1)k+1/k). Since the mapping
{0, 1}N 3 (εk) 7→

∑∞
k=1 εkxk is one-to-one, A(xk, yk) is the graph of a func-

tion f with domain contained in the ternary Cantor set. Moreover f maps
onto R, and its domain is an Fσδ which is not Gδσ, by Theorem 3.9.

We can also consider whether or not in Theorem 3.5 the condition that
the sum range of a conditionally convergent series is the whole space can
be replaced by the same condition for the achievement set. The following
proposition shows that in some cases we can reverse Theorem 3.5.

Proposition 3.11. Assume that
∑∞

n=1 xn is conditionally convergent
in Rk. If A(xn) is a dense subset of Rk, then SR(xn) = Rk.

Proof. Suppose that SR(xn) 6= Rk. By Proposition 3.1 we have
∑∞

n=1 xn
=
∑∞

n=1 T (yn, zn), where T : Rm × Rk−m → Rk is an isomorphism and
SR(yn) = Rm for some m with 1 ≤ m < k and

∑∞
n=1 zn is absolutely

convergent in Rk−m. Without loss of generality we may assume xn = (yn, zn).
Hence

∑∞
n=1 xn =

∑∞
n=1(yn, zn). Thus by Theorem 3.5 and compactness of

A(zn) we have A(xn) = Rm ×A(zn) 6= Rk, a contradiction.

By Theorem 3.5 and Proposition 3.11 we immediately obtain the follow-
ing.

Corollary 3.12. Let (xn) ⊂ Rk be such that
∑∞

n=1 xn is conditionally
convergent and A(xn) is dense in Rk. Let (yn) ⊂ Rm be such that

∑∞
n=1 yn

is absolutely convergent. Then A(xn, yn) = Rk ×A(yn).

On the other hand, one can construct a series in the plane whose sum
range is R2 but the achievement set is a dense set of measure zero.

Example 3.13. Let
∑∞

n=1(xn, yn) be defined by xi = (−1)i/210
k2 and

yi = (−1)i/2k for i ∈ (nk−1, nk], where n0 = 0 and nk+1 = nk + 210
k2+1.

Since
∑∞

n=1(xn, yn) is alternating and (xn, yn)→ (0, 0), the Leibniz criterion
shows that

∑∞
n=1(xn, yn) is convergent, and its sum equals (0, 0).

First, we will show that SR(xn, yn) = R2. Let Γ = {f ∈ (R2)∗ :∑∞
n=1 |f(xn, yn)| < ∞}. We need to prove that Γ contains no nontrivial

functionals. Every f ∈ (R2)∗ is of the form f(x, y) = ax + by for some
a, b ∈ R. We have

nk∑
i=nk−1+1

|yi| = (nk − nk−1)
1

2k
= 210

k2+1−k,

nk∑
i=nk−1+1

|xi| = (nk − nk−1)
1

210k
2 = 2.
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If a = 0 and b 6= 0, then
∞∑
i=1

|f(xi, yi)| =
∞∑
k=1

nk∑
i=nk−1+1

|byi| = |b|
∞∑
k=1

210
k2+1−k =∞.

If a 6= 0 and b = 0, then
∞∑
i=1

|f(xi, yi)| =
∞∑
k=1

nk∑
i=nk−1+1

|axi| = |a|
∞∑
k=1

2 =∞.

Now let a 6= 0 and b 6= 0. For large enough k which satisfies |a|/210k
2−k <

|b|/2, we have ∣∣∣∣ a

210k
2 +

b

2k

∣∣∣∣ ≥ |b|2k
− |a|

210k
2 ≥

|b|
2k+1

and the series
∑∞

k=1

∑nk
i=nk−1+1 |b|/2k+1 diverges. Consequently,

∞∑
i=1

|f(xi, yi)| =
∞∑
k=1

nk∑
i=nk−1+1

|axi + byi| =∞.

From the Steinitz Theorem we have SR(xn, yn) = R2.
Now we will show that A(xn, yn) ⊆ (L ∪ Q) × R, where L = {x :

∀r ∈ N ∃p, q ∈ Z (0 < |x − p/q| < 1/qr)} is the set of all Liouville num-
bers on the real line. It is well-known that L has Lebesgue measure zero. Let
r ∈ N. Suppose that (x, y) ∈ A(xn, yn), that is, (x, y) =

∑∞
n=1 εn(xn, yn).

Then there exists l ∈ N such that |
∑M

n=N εnyn| ≤ 1 for every M > N ≥ l.
There exists k0 ∈ N for which nk0−1 ≥ l, so |

∑nk
i=nk−1+1 εiyi| ≤ 1 for every

k ≥ k0. Note that limk→∞
10k

2−k−1
10(k−1)2

= ∞ and the sequence
(
10k

2−k−1
10(k−1)2

)
is

strictly increasing. Assume that k is the minimal natural number such that
k ≥ k0 and 10k

2−k−1
10(k−1)2

≥ r. Let m ≥ k. Since |
∑nm

i=nm−1+1 εiyi| ≤ 1 and
|yi| = 1/2m for i ∈ (nm−1, nm], we obtain∣∣∣ ∑

i∈(nm−1,nm]∩2N

εi −
∑

i∈(nm−1,nm]∩(2N−1)

εi

∣∣∣ ≤ 2m.

This means that the excess of ones in the sequence (εi)i∈(nm−1,nm] with odd
indices over those with even indices is less than 2m and vice versa. Conse-
quently, |

∑nm
i=nm−1+1 εixi| ≤ 2m/210

m2

. Moreover,
∑nk−1

i=1 εixi = p0/2
10(k−1)2

for some p0 ∈ Z. We have∣∣∣ ∞∑
i=nk−1+1

εixi

∣∣∣ ≤ ∞∑
m=k

∣∣∣ nm∑
i=nm−1+1

εixi

∣∣∣ ≤ ∞∑
m=k

2m

210m
2 =

∞∑
m=k

1

210m
2−m

.
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Note that
1

210
(m+1)2−m−1

1

210
m2−m

=
210

m2−m

210
(m+1)2−m−1

= 210
m2−m−10(m+1)2+m+1 = 21−(1−10

2m+1)10m
2

≤ 1/2

for every m ∈ N. Hence
∞∑
m=k

1

210m
2−m

≤
∞∑
m=k

1

210k
2−k
· 1

2m−k
=

2

210k
2−k

= 21+k−10
k2

.

Since 1 + k − 10k
2 ≤ −10(k−1)

2
r, we get∣∣∣ ∞∑

i=nk−1+1

εixi

∣∣∣ ≤ 2−10
(k−1)2 ·r =

1

(210
(k−1)2

)r
.

Hence ∣∣∣x− nk−1∑
i=1

εixi

∣∣∣ =
∣∣∣ ∞∑
i=nk−1+1

εixi

∣∣∣ ≤ 1

(210
(k−1)2

)r
.

Thus |x − p0/q0| ≤ 1/qr0 with q0 = 210
(k−1)2 . That means that x is either a

rational number or a Liouville number. Finally, A(xn, yn) ⊆ (L ∪ Q) × R.
Therefore A(xn, yn) is of measure zero.

4. Openness of achievement sets. In this section we show that for
some series on the plane its achievement set can be an open set not equal
to the whole plane or an open set with two additional points. These sets are
unbounded, since bounded achievement sets are compact.

Theorem 4.1. Let
∑∞

k=1 xk = X < ∞ with xk > 0 for every k ∈ N,
and suppose that

(?) for every a ∈ (0, 2X) there exists an interval Ia ⊆ A(xk) such that for
all t ∈ Ia there exists z ∈ A(xk) with t+ z = a.

If (yk) is conditionally convergent and
∑∞

k=1 yk = Y then A(xk, yk) =
(0, 2X) × R ∪ {(0, 0), (2X,Y )} =: B, where x2k−1 = x2k = xk and y2k−1 =
yk, y2k = 0 for every k ∈ N.

Proof. Observe that A(xk, yk) ⊆ B. Indeed,
∞∑
k=1

(xk, yk) =
(

2

∞∑
k=1

xk,

∞∑
k=1

yk

)
= (2X,Y ) ∈ A(xk, yk)

and (0, 0) ∈ A(xk, yk). Moreover
∑∞

k=1 εkxk ∈ (0, 2X) if in the sequence (εk)
there is at least one 0 and at least one 1. Hence

∑∞
k=1 εk(xk, yk) ⊆ B for

every (εk) ∈ {0, 1}N.
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To prove the reverse inclusion, it is sufficient to show that for every
(a, b) ∈ (0, 2X)×R we have (a, b) ∈ A(xk, yk). Let a ∈ (0, 2X) and b ∈ R. Let
Ia ⊆ A(xk) be an interval which satisfies (?). Then by the absolute conver-
gence of

∑∞
k=1 xk one can fix (εa1, . . . , ε

a
ka

)∈{0, 1}ka for which
∑∞

k=1 ε
a
kxk∈Ia

for every (εak)
∞
k=ka+1 ∈ {0, 1}N. The conditional convergence of

∑∞
k=1 yk

yields b =
∑∞

k=1 δkyk for some (δk) ∈ {0, 1}N, where δk = εak for k ≤ ka.
Then for t =

∑∞
k=1 δkxk ∈ Ia we define z =

∑∞
k=1 δkxk, where (δk) ∈ {0, 1}N

is such that t + z = a. Define (γk) ∈ {0, 1}N by alternating (δk) and (δk),
more precisely γ2k−1 = δk and γ2k = δk for every k ∈ N. Then
∞∑
k=1

γk(xk, yk) =
( ∞∑
k=1

γkxk,
∞∑
k=1

γkyk

)
=
( ∞∑
k=1

δkxk +
∞∑
k=1

δkxk,
∞∑
k=1

δkyk +
∞∑
k=1

δk · 0
)

= (t+ z, b+ 0) = (a, b).

Finally, A(xk, yk) = (0, 2X)× R ∪ {(0, 0), (2X,Y )}.
Now we will construct a series on the plane with an open achievement

set.

Theorem 4.2. Let
∑∞

k=1 vk = X <∞ with vk > 0 for every k ∈ N and
such that A(vk) − A(vk) = [−X,X]. Let (wk) be a decreasing null sequence
of positive terms with

∑∞
k=1wk = ∞. If x4k−3 = x4k−2 = vk, x4k−1 = x4k

= −vk and y4k−1 = y4k−3 = 0, y4k−2 = w2k−1, y4k = −w2k for every k ∈ N
then A(xk, yk) = (−2X, 2X)× R.

Proof. The inclusion A(xk, yk) ⊂ [−2X, 2X] × R is obvious, since∑∞
k=1 εkxk ∈ [−2

∑∞
k=1 vk, 2

∑∞
k=1 vk] for every (εk) ∈ {0, 1}N. Moreover,

the only way to obtain 2X in the first coordinate is to sum up all xk’s which
are greater than 0, more precisely 2X =

∑
k∈P xk where P = {k : xk > 0}

= {4n − i : n ∈ N, i ∈ {2, 3}}. We have
∑

k∈P yk =
∑

k∈Nw2k−1 = ∞.
Therefore A(xk, yk) ∩ {(2X, y) : y ∈ R} = ∅. In the same way we prove
A(xk, yk) ∩ {(−2X, y) : y ∈ R} = ∅ by considering the indices N \ P . Hence
A(xk, yk) ⊂ (−2X, 2X)× R.

Now we prove the reverse inclusion. Fix (a, r) ∈ (−2X, 2X)×R. Let (zk)
be the subsequence of (xk) consisting of all even-numbered elements; clearly
(zk) = (v1,−v1, v2,−v2, . . . ). Then A(zk) = A(vk) − A(vk) = [−X,X].
Define Ia = {t : −X < t < X, −X < a − t < X}, which is a non-
empty open interval. Then we can find a natural number N and (εk)

N
k=1 ∈

{0, 1}N such that
∑N

k=1 εkzk +
∑∞

k=N+1 εkzk ∈ Ia for each (εk)
∞
k=N+1 ∈

{0, 1}N. One can find (δk)
∞
k=N+1 ∈ {0, 1}N such that

∑N
k=1 εk(−1)k+1wk +∑∞

k=N+1 δk(−1)k+1wk = r. Denote t =
∑N

k=1 εkzk +
∑∞

k=N+1 δkzk ∈ Ia. Let
sk = x2k−1 for k ∈ N. Since |a− t| < X, one can find (γk)

∞
k=1 ∈ {0, 1}N such
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that
∑∞

k=1 γksk = a − t. Define (αk)
∞
k=1 ∈ {0, 1}N as follows: α2k = εk

for k ≤ N , α2k = δk for k > N and α2k−1 = γk for k ∈ N. Then∑∞
k=1 αk(xk, yk) = (a, r). Hence A(xk, yk) = (−2X, 2X)× R.

Remark 4.3. Let (vk) be a sequence of positive real numbers which ful-
fills condition (?) from Theorem 4.1, which in turn implies A(vk) + A(vk) =
[0, 2X] (as follows immediately from Theorem 4.2). The latter equality im-
plies that A(vk)−A(vk) = [−X,X]. To see this, assume that A(vk)+A(vk) =
[0, 2X] and fix y ∈ [−X,X]. Then y + X ∈ [0, 2X], so y + X = s + t for
some s, t ∈ A(vk). Hence y = s+ t−X = s− (X − t) ∈ A(vk)−A(vk). Note
also that A(vk)−A(vk) = [−X,X] implies A(vk)+A(vk) = [0, 2X] provided
vn ≥ 0.

On the other hand, if vk = 2/3k, then A(vk) is the ternary Cantor set. It
is well-known that A(vk) + A(vk) = [0, 2], or equivalently A(vk) − A(vk) =
[−1, 1], but (vk) does not satisfy (?) (the Cantor set contains no interval).

Example 4.4. Let (xn, yn)n∈N be((
1
2 , 1
)
,
(
1
2 , 0
)
,
(
1
4 ,−

1
2

)
,
(
1
4 , 0
)
,
(
1
8 ,

1
3

)
,
(
1
8 , 0
)
,
(

1
16 ,−

1
4

)
,
(

1
16 , 0

)
, . . .

)
.

Then by Theorem 4.1 we have A(xn, yn) = (0, 2)× R ∪ {(0, 0), (2, ln 2)}.

Example 4.5. If (xn, yn)n∈N is((
2
3 , 0
)
,
(
2
3 , 1
)
,
(
−2

3 , 0
)
,
(
−2

3 ,−
1
2

)
,
(
2
9 , 0
)
,
(
2
9 ,

1
3

)
,
(
−2

9 , 0
)
,
(
−2

9 ,−
1
4

)
, . . .

)
,

then by Theorem 4.2 we have A(xn, yn) = (−2, 2)× R.

5. Achievement sets of potentially conditionally convergent se-
ries. In this section we consider the set

⋃
σ∈S∞ A(xσ(k)) for a series

∑∞
k=1 xk.

If the series is absolutely convergent, then
⋃
σ∈S∞ A(xσ(k)) = A(xk). Here

we study the situation when the series is conditionally convergent. Clearly,
only the multidimensional case is interesting.

Recall that
∑∞

k=1 xk is potentially conditionally convergent if there exists
a permutation σ for which

∑∞
k=1 xσ(k) is conditionally convergent. We will

also consider the set Aabs(xk) = {
∑∞

k=1 εkxk :
∑∞

k=1 εk‖xk‖ < ∞, εk ∈
{0, 1} for each k ∈ N}.

Theorem 5.1. Let
∑∞

k=1 yk be an absolutely convergent series of real
numbers such that the function (εk) 7→

∑∞
k=1 εkyk, where (εk) ∈ {0, 1}N, is

injective. Assume that
∑∞

k=1 xk is conditionally convergent on the real line.
Let Y = {

∑∞
k=1 εkyk :

∑∞
k=1 εkxk is potentially conditionally convergent}.

Then:

(i)
⋂
σ∈S∞ A(xσ(k), yσ(k)) = Aabs(xk, yk).

(ii)
⋃
σ∈S∞ A(xσ(k), yσ(k)) = (R× Y ) ∪Aabs(xk, yk).



18 A. BARTOSZEWICZ ET AL.

Proof. (i) Let (x, y) ∈ Aabs(xk, yk) and σ ∈ S∞. Then

(x, y) =
∞∑
k=1

εk(xk, yk) =
∞∑
k=1

εσ(k)(xσ(k), yσ(k)),

because
∑∞

k=1 εk‖(xk, yk)‖ =
∑∞

k=1 ‖εk(xk, yk)‖ < ∞ and we know that
every absolutely convergent series is unconditionally convergent. Hence (x, y)
is in

⋂
σ∈S∞ A(xσ(k), yσ(k)).

Conversely, let (x, y) ∈
⋂
σ∈S∞ A(xσ(k), yσ(k)). Fix σ ∈ S∞. There are

(εj), (ε
′
k) ∈ {0, 1}N such that

(x, y) =
∞∑
j=1

εj(xj , yj) =
∞∑
k=1

ε′k(xσ(k), yσ(k)) =
∞∑
k=1

ε′′σ(k)(xσ(k), yσ(k))

where ε′′k = ε′σ−1(k). Since (εk) ∈ {0, 1}N is injective, the sequence (yk) is
injective as well, and if yj = yσ(k), then j = σ(k) and εj = ε′′σ(k). Thus
εσ(k) = ε′′σ(k). Therefore x =

∑∞
k=1 εσ(k)xσ(k) for any σ ∈ S∞, and conse-

quently
∑∞

k=1 εkxk is unconditionally convergent. Without loss of generality
we may assume that ‖(x, y)‖ = |x| + |y|. We have

∑∞
k=1 εk‖(xk, yk)‖ =∑∞

k=1 εk(|xk|+ |yk|) <∞. Hence (x, y) ∈ Aabs(xk, yk).
(ii) “⊆”. Let (x, y) =

∑∞
k=1 εk(xσ(k), yσ(k)) for some (εk) ∈ {0, 1}N and

σ ∈ S∞. We have two possibilities:
(1) If

∑∞
k=1 εkxσ(k) is absolutely convergent, then

∞∑
k=1

εσ−1(k)xk =
∞∑
k=1

εkxσ(k) = x

and also
∑∞

k=1 εσ−1(k)yk=
∑∞

k=1 εkyσ(k) = y. Hence
∑∞

k=1 εσ−1(k)(xk, yk)
is absolutely convergent, so (x, y) ∈ Aabs(xk, yk).

(2) If
∑∞

k=1 εkxσ(k) is conditionally convergent, then it is also potentially
conditionally convergent, so (x, y) ∈ R× Y .
“⊇”. From (i) we know that

Aabs(xk, yk) =
⋂

σ∈S∞

A(xσ(k), yσ(k)) ⊂
⋃

σ∈S∞

A(xσ(k), yσ(k)),

so it is enough to show that R × Y ⊂
⋃
σ∈S∞ A(xσ(k), yσ(k)). Fix a ∈ R

and y ∈ Y . Then there exist (εk) ∈ {0, 1}N and σ ∈ S∞ such that y =∑∞
k=1 εkyσ(k) and

∑∞
k=1 εkxσ(k) converge conditionally. One can rearrange

the terms of
∑∞

k=1 εkxσ(k) so that a =
∑∞

k=1 ετ(k)xτ(σ(k)). Since
∑∞

k=1 yk is
absolutely convergent, we have

∞∑
k=1

ετ(k)yτ(σ(k)) =
∞∑
k=1

εkyσ(k) = y.

Hence (a, y) ∈ A(xτ(σ(k)), yτ(σ(k))).
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Take any (xn, yn) which fulfills the assumptions of Theorem 5.1. By The-
orem 3.5, A(xn, yn) is dense in R× A(yn). So is S =

⋃
σ∈S∞ A(xσ(k), yσ(k)).

By Theorem 5.1 the horizontal section Sy equals R if y ∈ Y ; it is a singleton
if x =

∑∞
k=1 εkxk is absolutely convergent; and it is empty if

∑∞
k=1 εkxk is

not potentially conditionally convergent.
Let us finish the paper with a list of open questions:

(1) Does there exist a conditionally convergent series
∑∞

n=1 xn on the plane
such that A(xn) is the graph of a function with domain being a bounded
interval?

(2) Let SR(xn) = Rk. Is it true that either A(xn) = Rk or A(xn) is of
measure zero?

(3) Lemma 3.2 implies that the achievement sets of conditionally convergent
series in finite-dimensional spaces are unbounded. On the other hand,
there is an example of a conditionally convergent series in c0 with a
closed and bounded achievement set (Example 3.4). Obviously, such a
series can be found in every Banach space containing an isomorphic
copy of c0. Note that the series from Example 3.4 has an unbounded
achievement set in `1 (and it is well-known that `1 does not contain
a copy of c0). Is there a conditionally convergent series in `1 with a
bounded and closed achievement set?

(4) Is there a conditionally convergent series in some Banach space whose
achievement set is compact?

(5) In the proof of Theorem 3.9, we show that the achievement set is an-
alytic. Moreover there are analytic sets which are not Borel. Is there a
(conditionally convergent) series whose achievement set is non-Borel?

Recently, Professor Ajit Iqbal Singh has informed the authors about a
series of papers devoted to ranges of vector measures (see [LS] and references
therein). The range {µ(A) : A measurable} of a purely atomic finite measure
µ is the achievement set A(xn) where xn is the measure of the nth µ-atom
(by finiteness of µ there are at most countably many µ-atoms). Hence, there
is a strict connection between these studies and our paper (and other articles
on multidimensional achievement sets [BG, M1, M2]).
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