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ABSTRACT. We prove that the cardinality of the set of all 1-upper continuous functions f : (0,1) —» R

equals 2°. In particular, there is a non-Borel 1-upper continuous function. We also prove that there

are 2° p-lower continuous functions for p € (0, 3).

1. INTRODUCTION

S. Kowalezyk and K. Nowakowska in [4] introduced the notion of p-upper continuous functions,
where p € (0, 1). The notion of p-upper continuity is an example of the so called path continuity, which
was widely described in [1]. They prove that each function of that class is Lebesgue measurable and
has the Denjoy property. They also show that for any p € (0, %), there are p-continuous functions
which are not of Baire class one. Similar class, of the so called [\, p]-continuous functions, was
studied by K. Nowakowska in [7]. In [5] and [6], S. Kowalczyk and K. Nowakowska studied the
so-called maximal additive and multiplicative classes for [\, p]-continuous and p-upper continuous
functions. A. Karasiiiska and E. Wagner-Bojakowska (cf. [2]) showed that there exists a function
which is 1-upper continuous (i.e. p-upper continuous for each p € [0,1)) and is not approximately
continuous. Moreover, they showed that there is a function which is 1-upper continuous but is not of
Baire class one.

In this paper we prove that there are 2° functions which are 1-upper continuous and 2°¢ functions
which are p-lower continuous, for p € (0, %) In particular, there are non-Borel 1-upper continuous
and p-lower continuous functions. We also show that the class of all p-upper continuous functions for
p € (0,1) is not closed under point-wise addition, and therefore it does not form a linear subspace of
RE,

We use standard set-theoretic notation — for any undefined notion we refer the reader to A. Kechris’s
monograph [3]. Let N = {1,2,3,...} stands for the set of all natural numbers and let m stands for

Lebesgue measure on the real line. Let F be a measurable subset of R and let x € R. The numbers

dt(E,z) = liminf m(EN[e,z+1)
- ' t—0t t

and

_ EnN t
d+(E,J?) = limsup m 2,2 +1])
t—0t t
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are called respectively the right lower density of E at x and right upper density of E at x. The left

lower and upper densities of E/ at x are defined analogously. If
dt(B,z)=d (E,z) and d (E,z)=4d (E,z),

then we call these numbers the right density and left density of E at x, respectively. The numbers

d(E,z) = liminf mEN[e—t 2+ k]
7 t,k—0+ t+k

and

_ E —t k
d(E,z) = limsup m(EN|r =tz + k)
t,k—0t t+k

are called the upper and lower density of FE at x, respectively. Note that
d(E,z) =min{d (E,z),d"(E,z)}

and
d(B,z) = max{d (E,z),d (E,z)}.

If d(E,r) = d(E, ), we call this number the density of E at x and denote it by d(E,z). If d(E,z) = 1,
then we say that x is a density point of F.

Let us recall the notion of p-upper and p-lower continuity.

Definition 1. Let p € (0,1) and let f : I — R, where I C R is an open interval. We say that f is

(i) p-upper continuous at x € I provided there exists a measurable set E C I with x € E, such
that d(E,z) > p and f|g is continuous at x;
(13) p-lower continuous at x € I provided there ezists a measurable set E C I with x € E, such

that d(E,x) > p and f|g is continuous at x;

If f is p-upper (p-lower resp.) continuous at every point of I, we say that f is p-upper (p-lower resp.)

continuous.

We will denote the class of all p-upper (p-lower resp.) continuous functions defined on a unit
interval (0,1) by UC, ( LC, resp.). We say that f is 1-upper continuous if it is p-upper continuous
for every p € [0, 1).

For any nonempty set A we will denote the family of all finite sequences of elements of A by A<N.
For any finite sequence s = (s1,...,5,) € A<N and a € A by s’a we denote a concatenation of s and
a,i.e. s°a = (s1,...,5n,a). By |s| we denote the length of s. If & € AN, then let a|n = (a(1), ..., a(n))
and a|0 = (. Moreover, by 2<N (resp. 2V) we mean the set {0,1}<N (resp. {0,1}Y). For n € N we
denote 2" = {s € 2<N: |s| = n} and 2° = {0}.
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2. CARDINALITY OF THE SET UC,

Note that the definition of upper 1-continuous functions and approximately continuous functions
are similar but not identical. We have that f is 1-upper continuous at z if there is a measurable set
E such that d(E,z) = 1 and f| Eu{z} is continuous, and we say that f is approximately continuous
at z if there is a measurable set £ such that d(E,r) = 1 and f|gui,y is continuous. This slight
difference in the definition has a huge consequence. Since an approximately continuous function is of
Baire class one, there are ¢ approximately continuous functions. In this section we show that there
are 2° functions which are 1-upper continuous.

The main idea is the following. We may define sequences (zp,)neN, (Yn)neN, (Un)nen and (wy)nen
of positive numbers such that z,+1 < ypt+1 < Upt1 < Wpy1 < X, for each n € N, (x,)nen tends to 0

and

neN neN
Then, we define f : R — R in the following way:

e put f(z)=1if z € [z, yn] Or — € [Ty, yn] Or T > 21 Or T < —23

e put f(z) =0 if z € [up, w,] or —z € [uy, wy,]

e on R\ {0} define f to be (locally) affine.
The question is how to define f at 0?7 One can put f(0) =1 or f(0) = 0. In both cases f is 1-upper
continuous at 0, and consequently f is 1l-upper continuous on its domain. Our plan is to make a
similar construction of a function f for which the set A where we can freely put 0 or 1 is large, i.e.
of cardinality ¢. Since there are 2° functions from A to {0, 1} our construction will show that we may

define f in 2° ways to get a 1-upper continuous function.

Theorem 2. The set UC1 has cardinality 2°. In particular there is a non-Borel 1-upper continuous

function.

Proof. Let (¢n)nen be a decreasing sequence of numbers from the interval (0, %) that it is convergent
to 0. One can construct a sequence {I : s € 2<N} of closed subintervals of [0, 1] such that
1. Iy = [0,1];
2. Vs € 2<N min I,~g = min I,, max Iy-; = max I;
3. Vs € 2°N Vi € {0,1} [Iy4] = qjs41 /L]
Let

c=U N Lapm

ace2N neN

One can easily check, that C is a Cantor-like set (i.e. perfect, zero-dimensional and of measure zero).
The above construction is similar to the classical geometric construction of the ternary Cantor.

Starting from the unit interval Iy = [0, 1], in the first step we remove the open middle subinterval
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leaving two subintervals: Iy, I of lengths ¢;. In the second step the open middle subintervals of the
remaining intervals Iy, I are removed, leaving four segments: Iog, lo1, [10, I11 of lengths ¢2|Io| = g2-q1
and so on.

Let A,B C [0,1] be the unions of the closures of intervals removed in the odd and even steps

respectively, i.e.

A= U U Is\(ISAOUIs”l)

kEN sg22k—2

B=J) | L\UsoUIL)

k€EN se22k—1
Observe, that AU B = [0,1] \ C’, where C' C C is created by removing the boundary of the set
[0,1]\ C from C. In particular C' has cardinality ¢. Let g : AU B — {0, 1} be a characteristic function
of A. To illustrate the idea, the function ¢ is created by putting 1 over the closure of the intervals
removed in the odd step and putting 0 elsewhere. Let C” = C'\ {0,1}, let FF C C” and define a
function gr : (0,1) — {0,1} by the formula

1, when x € F
gr(x) = { g(x), when z € AUB

0, otherwise.

We will show that gp is 1-upper continuous. Let x € (0,1) and let E = g5 ({gr(2)}). We have the

following possibilities:

(1) = € A, then EJF(E,:U) =1lord (E,r)=1. Hence, d(E,x) = 1 and g is 1-upper continuous
at x.
(2) = € B, then 3+(E,x) =1lord (E,r)=1. Hence, d(E,r) = 1 and gp is 1-upper continuous
at x.
(3) = € F, then there are sequences: (nj)ren of odd numbers, (J,, )ken of intervals, (sp, )ren of
finite 0 — 1 sequences, such that for every k € N :
a) [sp,| =nr —1;
b) {z} = N I,
keN
c¢) Jp, is a connected component of A;

‘ISnk ‘

e) both sequences (min J,,, )ken, (max Jy, )gen converge to x from the right.
The above sequences can be chosen in the following way: there is a sequence (Jp, )ken of
intervals removed in the odd step (i.e. connected components of A) that is convergent (in

the sense of (e)) to  from the right and such that the interval .J,,, was removed exactly from
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I,,, - By c) and the definition of g, we have that .J,, C E. Hence, by b), d) and e) we obtain
that E+(E, xz) =1 and g is l-upper continuous at z.
(4) z € C" \ F, then by a similar reasoning as in the case when = € F, the function g is 1-upper

continuous at x.

Since there are exactly 2°¢ subsets of C”, the set ¢C; has cardinality 2°. O

3. CARDINALITY OF THE SET LC,

Let p € (0, %) This section is devoted to the proof that the cardinality of the set £C,, is 2°. The idea
of a construction of 2° p-lower continuous functions is similar to the one from the previous section
and uses a geometric construction of the ternary Cantor set.

and ay, = 5=, forn € N. Let A= |J [an,by), then d*(A,0) = 3.
neN

Lemma 3. Let b, = 27}—71

The above fact is probably folklore, but for the reader’s convenience we state the proof.

Proof. For h € (0,1) let ¢(h) = mANOR) Tet n € N and observe that

h
1 1
“on=1)> 2
and
1 1
@(%) <5
By the simple properties of the function ¢, we have that d*(4,0) = lim go(%) = % O

n—oo

Lemma 4. For every open interval (a,b) C (0,1) and every € > 0 there exists a set E C (a,b) such

that for all h € (0,b — a)

‘m(Eﬂ(a,LH—h)) 1
h 2

Proof. Let (a,b) C (0,1),e >0 and let A C (0,1) be as in Lemma 3. There exists ng € N such that

A 1
‘m< nOE) 1|
L 2
no
In particular for every n > ng
m(AnN (0, %)) 1
T - 5 < E.
Let us put A,, = AN (0, nio), By, = (0, nio) \ Ap,. The idea is to fit the set A, into the first half of

(a,b) and to fit the set —B,, into the second one, i.e. let E = (o - A,, +a) U (b — a - By,), where

_ (b—a)ng

For the further applications we have to modify the set E. Let {...,x_1,%0, %1, T2, ...} be an increasing

sequence of all endpoints of the intervals that form the set F, where x¢ = “T*'b. For every ¢ € Z one
can choose a small enough h; > 0 such that for the set F' = |J (x; — hj, x; + h;) we have

1€EZL
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e dt(F,a) =0;
e d~(F,b) =0.
It is easy to see that £ = E \ F' has the desired properties. O

Remark 5. In the sequel we will be using the following construction: for an interval (a,b) C (0,1)
and € > 0, let E C (a,b) be as in Lemma 4 and define a function f : (a,b) — [0,1] by the formula
1, whenz € E
f(@) =140, when x € (a,b) \ (EUF)
locally affine, when x € F

where F is as in the proof of Lemma 4 and the locally affine mappings over F ensure that f is

continuous.

Theorem 6. Let p € (0, %) The set LC, has cardinality 2°. In particular there is a non-Borel p-lower

continuous function.

_L
0™

{I, : s € 2<N} of closed subintervals of [0, 1] such that

Proof. Consider a sequence (&y)nen, Where &, = for n € N. One can construct a sequence
1. Iy =10,1];
2. Vs € 2<N min I~y = min I, max I;~; = max I;
3. Vs € 2NVi € {0,1} |I] = | 1]

Let

c=U N L

ae2N neN

then C is the ternary Cantor set.

The idea of the proof is to define a function f : (0,1)\C — [0, 1] by putting functions as in Remark 5
for €, > 0 inside all of the intervals removed in the n'* step. To formalize this concept: for every
n€Nandse€2v et Jg = I\ (Iy-oUIy+) and fs : Jg — [0,1] be as in Remark 5 for E|s|+1 = En-
Let us put f = |J fs. We will show that for any D C C\ {0, 1}, the function fp : (0,1) — [0, 1]
defined by e

1, when x € D
fo(z) = ¢ f(x), when z € (0,1)\ C
0, otherwise,
is p-lower continuous. Let D C C\ {0,1} and fix a point = € (0,1) and let B = f5'({fp(z)}). We

have the following possibilities:

(1) z € (0,1) \ C, then fp is continuous at z. Hence, it is p-lower continuous.
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(2) 2 € C\ {0,1} and x is not an endpoint of any interval Js. We will show that d* (B, z) > p.
Let h > 0 and consider the right neighborhood of z of the form (z,xz + h). We have two
possibilities:

a) x4+ h €C, then for 7 = {Js:J; C (z,xz+h)} and S = {s € 2<N : J, € J} we have that
h=m((z,x 4+ h)) = > m(J). Moreover, for N, = min{|s| + 1 : s € S}, N}, tends to 0o

JeJg
whenever h — 0. By Lemma 4 the following estimation holds

(5~ en)h < m(BO (5,2 + b)) < (5 +en,)h

(b) or z + h ¢ C, then there is a finite 0 — 1 sequence sj, such that x + h € Js,. Let
J={Js:JsC(z,z+h)}and S = {s € 2<N: J, € J}. We have that
h=m((z,z+h)n(JTUJ,)).
Moreover, let N = min{|s| + 1 : s € S} and N = min{Ny, |sp| + 1}. Observe that
N — oo whenever h — 0. Let d = min J,. Since
m(BN (z,z+ h)) =m(Bn|JJ) +m(BnN(d,z+h)),

by Lemma 4 the following inequalities hold:

m(B A (2,3 + h)) < (% +en)(d—z)+ (% e )@t h—d) < (% +en)h

and

— )= )+ (5 ~ )+ h = d) > (5 = en)h.

m(BN(z,z+h))
h

m(BA (2,34 h)) > (%

By the above calculations, for a small enough A > 0, the number can be as close
to % as we want. In particular d* (B, z) > p. By a similar argument (taking the intervals from
the left neighborhood of ) we may prove that d~ (B, x) > p.

(3) z € C\ {0,1} and = is an endpoint of some interval Js. In this case d*(B,z) > p and
d™(B,x) > p as well, where one of these inequalities follows from Lemma 4 and the other one

can be proved by a similar argument as in the previous case.

Summarizing, d(B,x) > p and fp is p-lower continuous at x. The fact that there are 2° subsets of
C\ {0,1} completes the proof.
O

We end the paper with two open questions:

(1) Does there exist a linear space X C R¥ of dimension 2° such that any f € X \ {0} is 1-upper
continuous? In other words: is the set UC; 2¢-lineable?
(2) What is the cardinality of the set of [\, p]-continuous functions? Is it 2¢ for some positive A

and p?
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