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I. AKBARBAGLU, S. G LA̧B, S. MAGHSOUDI, AND F. STROBIN

Abstract. For i = 1, 2, 3, let ϕi be Young functions, (Ω, µ) a (topological) measure space, E an

ideal of µ-measurable real-valued functions defined on Ω and Eϕi be the corresponding Calderón-

Lozanowskĭi space. Our aim in this paper is to give, under mild conditions, several results on

topological size (in the sense of Baire) of the sets {(f, g) ∈ Eϕ1 × Eϕ2 : |f |
⊙
|g| ∈ Eϕ3} and

{(f, g) ∈ Eϕ1 × Eϕ2 : ∃x ∈ V, (f
⊙
g)(x) is well defined} where

⊙
denotes the convolution or point-

wise product of functions and V a compact neighbourhood. Our results sharpen and unify the related

results obtained in diverse areas during recent thirty years.

1. Introduction

Let X be a topological vector space of functions such that the product “ · ” is defined on X ×X.

Then there arises the question whether the product f ·g does not belong to X for some pair (f, g). In

certain cases the solution of this problem is well-known. For example: when is the classical Lebesgue

space Lp(X), for a measure space (X,µ), closed under pointwise product? An easy application of

Hölder’s inequality and a result due essentially to B. Subramanian [41] give the answer. The problem

whether the Orlicz space Lϕ(X), defined on a measure space (X,µ), with pointwise product is a

Banach algebra was studied in [7, 18].

One can consider a quantitative version of this question, namely – is the set of the pairs (f, g) for

which f ·g exists small in the sense of Baire category or porosity? The first result of this sort was proved

by Balcerzak and Wachowicz in [9], who showed that the set {(f, g) ∈ L1[0, 1]×L1[0, 1] : f ·g ∈ L1[0, 1]}
is meager in L1[0, 1]×L1[0, 1]. Jachymski generalized this in [20], by proving that the set of those pairs

(f, g) that the product f · g is in Lp(X,µ) is either the whole Cartesian product Lp(X,µ)×Lp(X,µ),

or it is a meager subset, where p ≥ 1. G la̧b and Strobin in [13] strengthened this by proving that the

set of those pairs (f, g) such that the product f ·g is in Lr(X,µ) is either the whole Cartesian product

Lp(X,µ)×Lq(X,µ) or it is a σ-lower porous subset, where p ∈ (0,∞]. The similar dichotomies were

proved for Orlicz spaces by Akbarbaglu and Maghsoudi in [4] (independently by Strobin in [40]),

and for Lorentz spaces by G la̧b, Strobin and Yang in [15]. We extend this result to the so-called

Calderón-Lozanowskĭi spaces.

A more subtle and difficult case is what is known as Lp-conjecture; i.e., is Lp(G), where G is a

locally compact group with a left Haar measure, closed under convolution product for p > 1 only if

G is compact? Originated independently by M. Rajagopalan [36] and Z. Żelazko [44], it was an open

2010 Mathematics Subject Classification. Primary: 46E30, 43A15. Secondary: 54E52, 54H11.
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problem until resolved positively by S. Saeki [39] in 1990 after thirty years of struggling. Several

authors were involved in proving the Lp-conjecture in special cases – it is briefly described in paper

of Seaki who gave an extended list of references.

The study of quantitative version of Lp-conjecture was initiated by G la̧b and Strobin in [12], who

proved that if p, q > 1, 1/p + 1/q < 1, G is a locally compact but not compact group and V ⊂ G

is a compact neighbourhood of the identity, then the set of pairs (f, g) ∈ Lp(G) × Lq(G) such that

f ∗g(x) exists for some x ∈ V is σ-lower porous. If p ∈ (1, 2] and G is unimodular, then by the Young

inequality Lp(G) ∗Lp(G) ⊂ L
p

2−p (G). Thus f ∗ g(x) is λ-a.e. finite for f, g ∈ Lp(G). Akbarbaglu and

Maghsoudi in [1] proved that if G is non-unimodular, locally compact, non-compact group, V ⊂ G

is a compact neighbourhood of the identity, then the set of pairs (f, g) ∈ Lp(G) × Lq(G) such that

f ∗ g(x) exists for some x ∈ V is σ-lower porous. In [5] Akbarbaglu and Maghsoudi proved the same

assertion for p ∈ (0, 1) and q ∈ (0,∞]. Moreover, in [5] the authors proved that if G is nondiscrete,

1/p+1/q > 1+1/r where p, q ∈ [1,∞), r ∈ [1,∞], V ⊂ G is a compact neighbourhood of the identity,

then the set of those pairs (f, g) ∈ Lp(G) × Lq(G) such that f ∗ g ∈ Lr(V, λ|V ) is σ-lower porous;

which solves the old problem of Saeki [39].

Some authors considered the problem whether the Orlicz space Lϕ, defined on a locally compact

group G with a Haar measure, considered with the convolution product, is a Banach algebra; we

will call it, after [3], a Banach-Orlicz algebra. More generally, suppose ϕi, i = 1, 2, 3, are Young

functions and Lϕi(G) are the corresponding Orlicz spaces; then there is a natural question to ask

– what needs to be assumed on ϕi’s to get f ∗ g ∈ Lϕ3(G) provided f ∈ Lϕ1(G) and g ∈ Lϕ2(G)?

R. O’Neil in [33] examined the convolution operator in the context of Orlicz spaces, and proved

that if G is a unimodular locally compact group, ϕi, i = 1, 2, 3 are Young functions satisfying

ϕ−1
1 (x)ϕ−1

2 (x) ≤ xϕ−1
3 (x) for x ≥ 0, then for any fi ∈ Lϕi(G), i = 1, 2, the convolution f1 ∗f2 belongs

to Lϕ3(G) and moreover Nϕ3(f1 ∗ f2) ≤ 2Nϕ1(f1)Nϕ2(f2) where Nϕi is the Luxemburg norm on Lϕi .

In other words, the convolution map acts from Lϕ1(G)×Lϕ2(G) into Lϕ3(G). Furthermore, Hudzik,

Kamińska and Musielak in [19] undertook the Lp-conjecture for Orlicz spaces and proved that if G

is abelian then Lϕ(G) is the Banach-Orlicz algebra if and only if G is compact or limt→0 ϕ(t)/t > 0.

Kamińska and Musielak in [21] extended this result and gave necessary and sufficient conditions, in

terms of Young functions and groupG, for Lϕ1(G)∗Lϕ2(G) ⊆ Lϕ3(G), whereG is abelian. Akbarbaglu

and Maghsoudi proved in [3] that if G is amenable, ϕ is a ∆2-regular N -function, and Lϕ(G) is a

Banach-Orlicz algebra, then G is compact, in particular Lϕ(G) ⊂ L1(G). Some other related results

can be found in [37].

Akbarbaglu and Maghsoudi in [2] initiated the study of the quantitative Lp-conjecture for Orlicz

spaces. They gave sufficient conditions on ϕ1 and ϕ2 so that whenever G is non-unimodular, then the

set of those pairs (f, g) ∈ Lϕ1(G)× Lϕ2(G) for which f ∗ g is well-defined at some point of the fixed

neighbourhood of the identity, is σ-lower porous. The results from [2] shed light on sharpness and

necessity of the relation ϕ−1
1 (x)ϕ−1

2 (x) ≤ xϕ−1
3 (x) and unimodularity of the group G for the inclusion

Lϕ1(G) ∗ Lϕ2(G) ⊆ Lϕ3(G).

Recently, the analogue quantitative problems for pointwise products have been considered by Ak-

barbaglu and Maghsoudi, G la̧b and Strobin, and coauthors for Lp-spaces, Orlicz spaces, Lorentz

spaces, and the space of continuous functions; see [5, 6, 14, 15, 40].
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In this paper we improve of the results known for Orlicz spaces, and put them into the more general

setting of the so-called Calderón-Lozanovskĭi spaces Eϕ (where E is a Banach ideal space and ϕ a

Young function) which are generalizations of Orlicz spaces, Orlicz-Lorentz spaces and contain the

p-convexification E(p) (1 ≤ p <∞) of E. These spaces were introduced by A. P. Calderón in [10] and

developed by G. Ja. Lozanovskĭi in [29, 30]. They play crucial role in the theory of interpolation.

There is a lot of basic information on Calderón-Lozanovskĭi spaces; see, for example, [22, 28, 31].

Also for a recent study on pointwise multipliers of Calderón-Lozanovskĭi spaces see [24, 25]. Let

us mention that the Calderón-Lozanovskĭi spaces Eϕ we deal with here are special cases of general

Calderón-Lozanovskĭi spaces %(E,F ) with F = L∞ in this case.

The paper is organized as follows: In Section 2 we give some necessary definitions and notations con-

cerning Orlicz and Calderón-Lozanovskĭi spaces. In Section 3 we consider two Calderón-Lozanovskĭi

spaces on a locally compact group with the Haar measure. In this section, various results concerning

the size of pairs belonging to the product of the two Calderón-Lozanovskĭi spaces for which the con-

volution multiplication exists or is in another Calderón-Lozanovskĭi space are given. These results

generalize and sharpen the results for Lp and Orlicz spaces known in literature. Finally, in Section 4

the problem of pointwise product in Calderón-Lozanovskĭi spaces is studied.

2. Preliminaries

We need to recall some necessary definitions from abstract harmonic analysis, and Orlicz and

Calderón-Lozanovskĭi spaces.

Throughout this paper, let G denote a locally compact group with a fixed left Haar measure λ.

Also, let Mλ denotes the σ-algebra of all Haar measurable sets and L0(G) denote the set of all

(equivalence classes of) λ-measurable complex-valued functions on G. For measurable functions f

and g on G, the convolution

(f ∗ g)(x) =

∫
G
f(y)g(y−1x) dλ(y)

is defined at each point x ∈ G for which the function y 7→ f(y)g(y−1x) is Haar integrable.

For each x ∈ G, the formula λx(A) = λ(Ax) defines a left invariant regular Borel measure λx on

G. Thus, the uniqueness of the left Haar measure implies that for each x ∈ G there is a positive

number, say ∆(x), such that λx = ∆(x)λ. The function ∆ : G→ (0,∞) defined in this way is called

the modular function of G. It is clear that ∆ is a continuous homomorphism on G. Moreover, for

every measurable subset A of G,

λ(A−1) =

∫
A

∆(x−1)dλ(x);

for more details see [11] or [17]. The group G is called unimodular whenever ∆ = 1. In this case, the

left Haar measure and the right Haar measure coincide.

For 1 ≤ p ≤ ∞, classical Lebesgue spaces on G with respect to the Haar measure λ will be denoted

by Lp(G) with the norm ‖ · ‖p defined in the usual way.

Orlicz spaces have been thoroughly investigated from the point of view of functional analysis. We

refer to two excellent books [26] and [38] for more details. Also [31, 32, 42] provide some useful

information on the subject.
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A function ϕ : R→ [0,∞] is called a Young function if ϕ is convex, even, left continuous on (0,∞)

with ϕ(0) = 0; we also assume that ϕ is neither identically zero nor identically infinite on (0,∞). As

an elementary example of a Young function we can consider ϕ(x) = |x|p/p, for p > 1. For any Young

function ϕ we define:

aϕ = sup{x ∈ R : ϕ(x) = 0} and bϕ = sup{x ∈ R : ϕ(x) <∞}.

A Young function ϕ is called finite if bϕ = ∞. It is easy to observe that it is continuous on [0, bϕ),

nondecreasing on [0,∞) and strictly increasing on [aϕ, bϕ].

We also need an inverse of a Young function ϕ. For a Young function ϕ and y ∈ [0,∞) let

ϕ−1(y) = sup{x ≥ 0 : ϕ(x) ≤ y}.

The following lists basic properties of Young functions and their inverses. We skip an easy proof.

Lemma 2.1. In the above frame:

(1.) For all x ≥ 0, ϕ
(
ϕ−1(x)

)
≤ x.

(2.) If ϕ(x) <∞ then x ≤ ϕ−1
(
ϕ(x)

)
.

(3.) If x ∈ [0, ϕ(bϕ)], then ϕ
(
ϕ−1(x)

)
= x.

(4.) If x ∈ [aϕ, bϕ], then x = ϕ−1
(
ϕ(x)

)
.

Let (Ω,Σ, µ) be a measure space and ϕ be a Young function. For each f ∈ L0(Ω), the space of all

(equivalence classes of) µ-measurable (complex-valued) functions defined on Ω, we define

%ϕ(f) =

∫
Ω
ϕ(|f(x)|) dµ(x).

Then the Orlicz space Lϕ(Ω) is defined by

Lϕ(Ω) = {f ∈ L0(Ω) : %ϕ(af) <∞, for some a > 0 }.

The Orlicz space Lϕ(Ω) is a Banach space under the norm Nϕ(·), called Luxemburg norm, defined

for f ∈ Lϕ(Ω) by

Nϕ(f) = inf{k > 0 : %ϕ(f/k) ≤ 1}.

It is well-known that

(1) Nϕ(f) ≤ 1 if and only if %ϕ(f) ≤ 1,

and if 0 < µ(F ) <∞ then

(2) Nϕ(χF ) =

[
ϕ−1

(
1

µ(F )

)]−1

;

see Corollary 3.4.7 in [38]. Here χA denotes the characteristic function of a subset A.

Now let us give definitions concerning our main object in this paper, namely Calderón-Lozanowskĭi

spaces which are defined in the similar way as Orlicz spaces, and they share common properties. Let

(Ω,Σ, µ) be a complete σ-finite measure space. A Banach space E = (E, ‖·‖E) is called a Banach ideal

space on Ω if E is a linear subspace of L0(Ω) and satisfies the ideal property, that is if f ∈ E, g ∈ L0(Ω)

and |g(t)| ≤ |f(t)| for µ-almost all t ∈ Ω, then g ∈ E and ‖g‖E ≤ ‖f‖E .
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We distinguish two cases - real and complex ones. Namely, if E consists only of real functions,

then we consider E as a real Banach space. In the second case, when E consists also of complex

functions, then we consider E as a complex space.

Remark 2.2. Assume that E is complex and let ER = {Re(f) : f ∈ E}. Then it is easy to see that

(ER, ‖ · ‖E) is a (real) Banach ideal space and E = {f + ig : f, g ∈ ER}.

Note that most proofs presented later will automatically work for both cases (in some places we

will write Re(f), Re(g) etc., but in the real case we just have Re(f) = f, Re(g) = g etc.). We will

emphasize the cases when some changes appear.

For a given Banach ideal space E on Ω and a Young function ϕ, let Iϕ : L0(Ω) → [0,∞] be a

semimodular defined by

Iϕ(f) =

{
‖ϕ(|f |)‖E if ϕ(|f |) ∈ E,
∞ otherwise.

The Calderón-Lozanowskĭi space Eϕ is the space

Eϕ = {f ∈ L0(Ω) : Iϕ(cf) <∞ for some c > 0}

with the Luxemburg norm

‖f‖Eϕ = inf{c > 0 : Iϕ(f/c) ≤ 1}.

If E = L1(Ω), then Eϕ is the Orlicz space Lϕ(Ω) equipped with the Luxemburg norm. If E is a

Lorentz function (sequence) space, then Eϕ is the corresponding Orlicz-Lorentz function (sequence)

space equipped with the Luxemburg norm. Also, if ϕ(t) = tp, 1 ≤ p <∞, then Eϕ is in this case the

p convexification E(p) of E with the norm ‖f‖E(p) = ‖|f |p‖1/pE . Finally, if ϕ(t) = 0 for t ∈ [0, 1] and

ϕ(t) =∞ otherwise, then Eϕ = L∞(Ω) and the corresponding norms are equal.

The following result links the Luxemburg norm ‖ · ‖Eϕ with the original norm ‖ · ‖E on a Banach

ideal space E.

Lemma 2.3. Let (Ω,Σ, µ) be a measure space and E be a Banach ideal space. If A ⊆ Ω is such that

0 < µ(A) <∞, then (we assume here 1/0 =∞)

‖χA‖Eϕ =

[
ϕ−1

(
1

‖χA‖E

)]−1

.

Proof. By the definition of Luxemburg norm we have

‖χA‖Eϕ = inf{t > 0 : ‖ϕ(χA/t)‖E ≤ 1}.

Then (we assume here that 1/∞ = 0)

‖ϕ(χA/t)‖E ≤ 1 ⇐⇒ ϕ(1/t)‖χA‖E ≤ 1 ⇐⇒ ϕ(1/t) ≤ 1/‖χA‖E

⇐⇒ 1/t ≤ ϕ−1(‖χA‖E) ⇐⇒ t ≥
[
ϕ−1

(
1

‖χA‖E

)]−1

.

�
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We finish this section with the notion of porosity from [12]; for more details see also [43]. Let X

be a metric space. The open ball with center x ∈ X and radius r > 0 is denoted by B(x, r). For a

given number 0 < c ≤ 1, a subset M of X is called c-lower porous if

lim inf
R→0+

γ(x,M,R)

R
≥ c

2

for all x ∈M , where

γ(x,M,R) = sup{r ≥ 0 : ∃ z ∈ X,B(z, r) ⊆ B(x,R) \M}.

It is clear that M is c-lower porous if and only if

∀x ∈M,∀α ∈ (0, c/2), ∃ r0 > 0, ∀r ∈ (0, r0), ∃ z ∈ X,B(z, αr) ⊆ B(x, r) \M.

A set is called σ-c-lower porous if it is a countable union of c-lower porous sets with the same constant

c > 0. It is easy to see that a σ-c-lower porous set is meager, and the notion of σ-porosity is stronger

than that of meagerness.

3. subsets related to convolution product

Throughout this section let G be a locally compact group with a fixed left Haar measure λ, and E

be a Banach ideal in L0(G) which satisfies additionally the conditions:

(a) if fn ↗ f for some nonnegative (real) functions fn ∈ E, n ∈ N and f ∈ L0(G), then

||fn||E → ||f ||E provided f ∈ E, and ||fn||E →∞ if f /∈ E.

(b) if V ⊂ G and λ(V ) <∞, then χV ∈ E;

(c) if V ⊂ G and λ(V ) < ∞, then there is CV < ∞ such that
∫
V |f |dλ ≤ CV ||f ||E for every

f ∈ E.

Remark 3.1. If a Banach ideal E consists of real functions, then the above conditions mean that E

is a Banach function space according to [8, Definitions 1.1.1 and 1.1.3]. Indeed, it is enough to take

%(f) :=

{
||f ||E , f ∈ E
∞, f /∈ E

. Moreover, it is easy to see that if E is complex, then in such case, the

real space ER (see Remark 2.2) is a Banach function space.

Nonnegative (real) functions f, g ∈ L0(G) are called equimeasurable, if for every t ≥ 0,

λ({x ∈ G : |f(x)| > t}) = λ({x ∈ G : |g(x)| > t}).

We additionally assume that:

(3) for every equimeasurable real functions f, g ∈ E, ‖f‖E = ‖g‖E

Remark 3.2. In the case when E is real, condition (3) means that E is so-called rearrangement-

invariant space [8, Definition 2.4.1]. If E is complex, then ER is rearrangement-invariant space.

Observe that if U, V ∈Mλ and λ(V ) = λ(U), then χV and χU are equimeasurable, hence ‖χV ‖E =

‖χU‖E . Thus there exists a function ξE : [0,∞)→ [0,∞) such that for every measurable V ⊂ G with

λ(V ) <∞
ξE(λ(V )) := ‖χV ‖E .
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The function ξE (which is uniquely determined just on the range of λ), is called the fundamental

function of E [8, Definition 2.5.1].

Remark 3.3. Note that the Haar measure is resonant in the sense of [8] (see [8, Theorem 2.2.7]), so

the settings of [8, Definition 2.5.1] are satisfied. Moreover, using the properties of the Haar measure,

we see that:

1. If G is discrete and infinite, then for some c > 0, λ({x}) = c for all x ∈ G. Hence ξE is

determined on {kc : k ∈ N ∪ {0}}. Then we assume that ξE is defined on the rest linearly.

2. If G is not discrete and not compact, then for every t ∈ [0,∞) there exists V ⊂ G such that

λ(V ) = t. In particular, ξE is uniquely determined on the whole [0,∞).

3. If G is compact but not discrete, then the image of λ equals the interval [0, λ(G)]. Hence ξE

is uniquely determined on this interval. In this case we choose ξE(t) := ξE(λ(G)) for the rest

t > λ(G).

Now, [8, Corollary 2.5.3] give us also the following properties. Note that part (3.) follows from (2.)

in below:

Lemma 3.4. The fundamental function ξE satisfies the following:

(1.) ξE is nondecreasing and continuous except (perhaps) at origin and ξE(0) = 0.

(2.) The mapping t→ ξE(t)
t is nonincreasing.

(3.) For K := limt→∞
ξE(t)
t and every ε > 0 there is t0 such that ξE(t) ≤ (K + ε)t for every t ≥ t0.

Finally, we make another assumptions:

(4) The fundamental function ξE is continuous at 0, that is, limt→0 ξE(t) = 0

(5) The fundamental function ξE is unbounded, that is, limt→∞ ξE(t) =∞.

Remark 3.5. In view of Remark 3.3, we see that if G is discrete, then ξE is continuous at 0. Also

by [8, Corollary 2.5.5] we know that if E is separable, then ξE is continuous at 0. Let us remark that

the condition (5) is also natural, for example it (and also the earlier ones) is satisfied when G is not

compact and E = Lp(G) where ‖ · ‖ is the Lp-norm.

Now for every s ∈ [0,∞), set

ξ−1
E (s) := sup{t ∈ [0,∞) : ξE(t) ≤ s}.

We will use the following simple facts. Observe that the second part of (1.) in below follows from

the condition (4) above.

Lemma 3.6.

(1.) The function ξ−1
E : [0,∞)→ [0,∞] is nondecreasing and limt→0 ξ

−1
E (t) = 0;

(2.) For every t ∈ [0,∞), ξ−1
E (ξE(t)) ≥ t.

Let us summarize our assumptions on the Banach ideal E: we assume that it is chosen such that

(a) − (b), (3), (4) and (5) are satisfied (in particular, G is assumed to be non-compact), which, in

the language of [8], means that E or ER is a rearrangement-invariant Banach function space such

that its fundamental function ξE is continuous at 0 and unbounded. In particular, E can be taken
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as many Lebesgue spaces Lp (or even Orlicz spaces Lϕ). We refer the interest reader to [8] and to

[23] for further discussion on the topic.

Next, let ϕ1, ϕ2 be Young functions. We equip the product of Calderón-Lozanowskĭi spaces Eϕ1 ×
Eϕ2 with the complete norm

‖(f, g)‖ϕ1,ϕ2 = max
{
‖f‖Eϕ1 , ‖g‖Eϕ2

} (
f ∈ Eϕ1 , g ∈ Eϕ2

)
.

We commence with some definitions which we need to state our first result.

A locally compact group G satisfies a condition (?) if

for every compact neighbourhood V of the identity element of G, there exist α > 1 and

a strictly increasing sequence (pn)n∈N such that for each n ∈ N, λ
(
V 2pn

)
< αλ(V pn).

We say that G has polynomial growth if for every compact neighbourhood V of the identity element

of G, there exists d ∈ N such that

lim sup
n→∞

λ(V n)

nd
<∞.

Let us recall that according to [35, Proposition 16.28], every locally compact group G having

polynomial growth satisfies the condition (?). Also, by [34, Corollary 6.18], locally compact abelian

groups and nilpotent groups have polynomial growth. Moreover, by [34, Proposition 6.6, 6.9] every

polynomially growing group is unimodular.

Let us remark that for any Young function ϕ, we write f ∗ g ∈ Lϕ(G) to mean that |f | ∗ |g| < ∞
λ-almost everywhere, f ∗g is Haar measurable on the set

{
x ∈ G : |f ∗g|(x) <∞

}
and Nϕ(f ∗g) <∞.

Theorem 3.7. Let G be a locally compact group that satisfies the condition (?) and let ϕi, i = 1, 2, 3

be Young functions with ϕi(bϕi) > 0, for i = 1, 2, 3 and

(6) lim inf
x→0

ϕ−1
1 (x)ϕ−1

2 (x)

xϕ−1
3 (x)

=∞.

If G is non-compact, then the set

F = {(f, g) ∈ Eϕ1 × Eϕ2 : |f | ∗ |g| ∈ Eϕ3} .

is of first category in Eϕ1 × Eϕ2.

Remark 3.8. Let us remark that the above theorem is an extension of the first part of [21, Theorem

11], where it is shown that F 6= Eϕ1 × Eϕ2 in the case of Orlicz spaces Eϕi (observe that if (f, g) ∈
(Eϕ1 × Eϕ2) \ F , then also (|f |, |g|) ∈ (Eϕ1 × Eϕ2) \ F ). In fact, it just a partial extension since we

additionally assume that ϕi(bϕi) <∞ for i = 1, 2, 3. However, note that [21, Theorem 11] is restricted

to abelian groups but Theorem 3.7 can be applied for a wider class of groups, in particular, nilpotent

groups.

Proof. We will write ‖ · ‖ instead of ‖ · ‖E . For any natural number n, put

Fn =
{

(f, g) ∈ Eϕ1 × Eϕ2 :
∥∥|f | ∗ |g|∥∥

Eϕ3
< n

}
.

So F =
⋃
n∈N Fn. The proof will be complete if we show that for each n ∈ N, Fn is nowhere dense.
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Fix n ∈ N, R > 0 and (f, g) ∈ Fn. There is 0 < tn < min{ϕi(bϕi) : i = 1, 2, 3} such that for

0 < t ≤ tn,

(7)
R2

288(K + 1)

ϕ−1
1 (t)ϕ−1

2 (t)

tϕ−1
3 (t)

> n.

Since G is not compact, there are compact neighbourhoods of the identity element of G with as big

but finite measure as needed. Hence, by Lemma 3.4(3.) and (5) we can find a compact symmetric

neighbourhood V of the identity element of G such that:

(8)
1

‖χV ‖
< tn and ‖χV ‖ ≤ (K + 1)λ(V ).

Since G satisfies the condition (?), for such compact neighbourhood V , there are α > 1 and a sequence

(pk)k∈N with λ
(
V 2pk

)
< αλ(V pk) (in particular, λ(V pk) <∞ for all k ∈ N).

Now consider two cases:

Case 1. lim
k→∞

λ(V pk) =∞. By (6) we choose k0 ∈ N such that for every k ≥ k0 we have

(9)
R2

72

‖χV pk‖
K + 1

ϕ1
−1

(
1

α‖χV pk‖

)
ϕ2
−1

(
1

α‖χV pk‖

)
> nαϕ3

−1

(
1

α‖χV pk‖

)
.

Case 2. The increasing sequence
(
λ(V pk)

)
k∈N is bounded from above, so it is convergent. Hence,

by (7), (8) and the fact that ||χV || ≤ ||χV pk ||, there is k0 ∈ N such that for k ≥ k0, λ(V 2pk) ≤ 2λ(V pk)

and

(10)
R2

72

‖χV pk‖
K + 1

ϕ1
−1

(
1

2‖χV pk‖

)
ϕ2
−1

(
1

2‖χV pk‖

)
> 2nϕ3

−1

(
1

2‖χV pk‖

)
.

Now let A = V pk0 and B = V 2pk0 . We proceed with Case 1. and Case 2. together (if Case 2.

holds, then in the next computations α equals 2). By Lemma 3.4(1.), (2.), we have

(11) ‖χB‖ = ξE
(
λ(B)

)
≤ ξE

(
αλ(A)

)
≤ αξE

(
λ(A)

)
= α‖χA‖.

Now let r < R/6 be such that

(12) λ(A)− Sξ−1
E

(
6r

R
‖χB‖

)
− ξ−1

E

(
6r

R
‖χA‖

)
≥ 1

2
λ(A),

where S := supx∈B ∆(x−1) (such an r exists by Lemma 3.6(1.)).

Define

(13) Mf :=
R

3‖χA‖Eϕ1
=
R

3
ϕ−1

1

(
1

‖χA‖

)
, Mg :=

R

3‖χB‖Eϕ2
=
R

3
ϕ−1

2

(
1

||χB||

)
and

f̃(y) :=


f(y) y /∈ A
f(y) +Mf Re

(
f(y)

)
≥ 0, y ∈ A

f(y)−Mf Re
(
f(y)

)
< 0, y ∈ A,

g̃(y) :=


g(y) y /∈ B
g(y) +Mg Re

(
g(y)

)
≥ 0, y ∈ B

g(y)−Mg Re
(
g(y)

)
< 0, y ∈ B.

Then

‖f − f̃‖Eϕ1 = ‖MfχA‖Eϕ1 = R/3 < R,
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and similarly

‖g − g̃‖Eϕ2 < ‖MgχB‖Eϕ2 = R/3 < R.

Hence B
(
(f̃ , g̃), r

)
⊂ B

(
(f, g), R

)
. It remains to show that B

(
(f̃ , g̃), r

)
∩ Fn = ∅.

Let (h, k) ∈ B
(
(f̃ , g̃), r

)
. Put

A1 := {x ∈ A : |h(x)| ≤Mf/2}, B1 := {x ∈ B : |k(x)| ≤Mg/2}

and A2 = A \A1 and B2 = B \B1.

Then

r ≥ ‖h− f̃‖Eϕ1 ≥ ‖(h− f̃)χA1‖Eϕ1 ≥
1

2
Mf‖χA1‖Eϕ1

Lem.2.3
=

Mf

2ϕ−1
1

(
1

‖χA1
‖

) ,
so by Lemma 2.1, we have

1

‖χA1‖
≥ ϕ1

(
ϕ−1

1

(
1

‖χA1‖

))
≥ ϕ1

(
Mf

2r

)
= ϕ1

(
R

6r
ϕ−1

1

(
1

‖χA‖

))
≥ R

6r
ϕ1

(
ϕ−1

1

(
1

‖χA‖

))
=
R

6r

1

‖χA‖
.

Hence

‖χA1‖ ≤
6r

R
‖χA‖.

In the same way we can show that

‖χB1‖ ≤
6r

R
‖χB‖.

Using

λ(B−1
1 ) =

∫
B1

∆(x−1)dλ(x) ≤ S
∫
B1

dλ(x) = Sλ(B1),

and Lemma 3.6, we have that

λ(A)− λ(B−1
1 )− λ(A1) ≥ λ(A)− Sλ(B1)− λ(A1)

≥ λ(A)− Sξ−1
E (‖χB1‖)− ξ−1

E (‖χA1‖)

≥ λ(A)− Sξ−1
E

(
6r

R
‖χB‖

)
− ξ−1

E

(
6r

R
‖χA‖

)
,

which in view of (12) gives us

(14) λ(A)− λ(B−1
1 )− λ(A1) ≥ 1

2
λ(A).

Take z ∈ A and consider the set

Hz = A2 ∩ zB−1
2 .

Then Hz ⊂ A2 and H−1
z z ⊂ B2. Also by (14),

λ(Hz) = λ(A2 ∩ zB−1
2 ) = λ

(
z(z−1A2 ∩B−1

2 )
)

= λ(z−1A2 ∩B−1
2 ) =

(15) = λ(z−1A2)− λ(z−1A2 \B−1
2 ) ≥ λ(A2)− λ(B−1 \B−1

2 )

= λ(A)− λ(A1)− λ(B−1
1 )

(14)

≥ 1

2
λ(A)
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Finally, for z ∈ A we have by (8), (9), (10), (11), (15) and (13) (recall that we set α := 2 if Case

2. holds)

|h| ∗ |k|(z) ≥
∫
Hz

|h(y)||k(y−1z)| dλ(y) ≥ λ(Hz)
MfMg

4

(15),(13)

≥ R2

72
ϕ−1

1

(
1

‖χA‖

)
ϕ−1

2

(
1

‖χB‖

)
λ(A)

≥ R2

72
ϕ−1

1

(
1

α‖χA‖

)
ϕ−1

2

(
1

α‖χA‖

)
λ(A)

(8),(9),(10),(11)
> nαϕ−1

3

(
1

α‖χA‖

)
and hence ∥∥∥∥ϕ3

(
|h| ∗ |k|
n

)∥∥∥∥ ≥ ∥∥∥∥ϕ3

(
|h| ∗ |k|
n

)
χA

∥∥∥∥
≥
∥∥∥∥ϕ3

(
αϕ−1

3

(
1

α‖χA‖

))
χA

∥∥∥∥
≥
∥∥∥∥ϕ3

(
ϕ−1

3

(
1

‖χA‖

))
χA

∥∥∥∥ = 1.

So ‖|h| ∗ |k|‖Eϕ3 ≥ n and (h, k) /∈ Fn. �

A locally compact group G satisfies a condition (??) if

for every compact neighbourhood V of the identity element of G there exist κ > 1 and

a sequence (Un)n∈N contained in V with lim
n→∞

λ(Un) = 0 and λ(U−1
n Un) ≤ κλ(Un).

In [17] there are examples of groups fulfilling the condition (??). For instance groups containing

an open subgroup of the form Ra × Tb × F , where a, b are positive integers and F is a finite group,

satisfy the condition (??).

Theorem 3.9. Let G be a locally compact group that satisfies the condition (??), and let ϕi, i = 1, 2, 3

be Young functions such that

lim inf
x→∞

ϕ−1
1 (x)ϕ−1

2 (x)

xϕ−1
3 (x)

=∞.

Then the set

F =
{

(f, g) ∈ Lϕ1(G)× Lϕ2(G) : |f | ∗ |g| ∈ Lϕ3(G)
}
.

is of first category in Lϕ1(G)× Lϕ2(G).

Remark 3.10. Note that the above result is a topological strengthening of [21, Theorem 14] with

a slightly weaker condition.

Proof. The proof is similar to Theorem 3.7 with required modifications. In particular, we should

define here A := Un and B := U−1
n Un (observe that U−1

n Un is symmetric) for sufficiently large n. �

In the sequel we generalize the main result of [19] from abelian locally compact groups to amenable

ones in the context of Orlicz spaces. Let us recall that amenability of a locally compact group G

can be equivalently define using the so-called Leptin condition, namely G is amenable whenever for

every compact subset U of G and any ε > 0 there exists a compact subset V in G of positive measure

such that λ(UV ) < (1 + ε)λ(V ); see Theorem 7.9 and Proposition 7.11 in [35]. It should be pointed
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out that by Propositions 12.1 and 12.2 in [35] every compact and abelian locally compact group is

amenable.

Theorem 3.11. Let G be an amenable locally compact group, ϕ a Young function with lim
t→0

ϕ(t)/t = 0,

ϕ(bϕ) > 0 and ψ be a Young function with ψ(bψ) =∞. If G is non-compact, then the set

F =
{

(f, g) ∈ Eϕ × Eψ : |f | ∗ |g| ∈ Eψ
}

is of first category in Eϕ × Eψ.

Proof. For any natural number n, put

Fn =
{

(f, g) ∈ Eϕ × Eψ :
∥∥|f | ∗ |g|∥∥

Eψ
< n

}
So, F =

⋃
n∈N Fn. We will show that for each n ∈ N, Fn is nowhere dense. This will complete the

proof.

Fix a natural number n ∈ N. Let (f, g) ∈ Fn and R > 0. Note that the assumption lim
t→0

ϕ(t)/t = 0

implies that lim
t→0

ϕ−1(t)/t = ∞. Now by non-compactness of G, Lemma 3.4(3.) and (4), we can

choose a large enough compact symmetric neighbourhood V of the identity of G such that ‖χV ‖ ≤
(K + 1)λ(V ), ‖χV ‖ϕ(bϕ) > 1 and

(16)
R2

72

‖χV ‖
K + 1

ϕ−1

(
1

‖χV ‖

)
> 2n.

Since G is amenable, there is a compact set C with 0 < λ(C) <∞ such that λ(V C) < 2λ(C). Then,

setting B := V C, we have by Lemma 3.4(1.),(2.),

‖χB‖ = ξE
(
λ(B)

)
≤ ξE

(
2λ(C)

)
≤ 2ξE(λ(C)) = 2‖χC‖.

Now let r < R/6 be such that

(17) λ(V )− Sξ−1
E

(
6r

R
‖χB‖

)
− ξ−1

E

(
6r

R
‖χV ‖

)
≥ 1

2
λ(V ),

where S = max{∆(x−1) : x ∈ B} (the existence is guaranteed by Lemma 3.6(1.)).

Next, define Mf , Mg and functions f̃ and g̃ on G as in Theorem 3.7 (for sets V , B and functions

ϕ,ψ, respectively). Then

‖f − f̃‖Eϕ = ‖g − g̃‖Eψ = R/3.

Hence B
(
(f̃ , g̃), r

)
⊆ B

(
(f, g), R

)
and it remains only to be proved that B

(
(f̃ , g̃), r

)
∩ Fn = ∅. Take

(h, k) ∈ B
(
(f̃ , g̃), r

)
.

Put

V1 :=
{
x ∈ V : |h(x)| < Mf/2

}
, B1 :=

{
x ∈ B : |k(x)| < Mg/2

}
.

Then, proceeding similarly as in the proof of Theorem 3.7, we get

‖χV1‖ ≤
6r

R
‖χV ‖ and ‖χB1‖ ≤

6r

R
‖χB‖.

and by (17),

λ(V )− λ(V1)− λ(B−1
1 ) ≥ 1

2
λ(V ).

The above inequalities also show that sets V2 := V \ V1 and B2 := B \B1 are of positive measure

and hence non-empty. Now let z ∈ C be an arbitrary element and define a set Hz = V2 ∩ (zB−1
2 ).
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It can be easily seen that we have z−1V ⊆ B−1, and thus z−1V2 ⊆ B−1. Hence (see the proof of

Theorem 3.7) λ(Hz) ≥ 1
2λ(V ). Also, Hz ⊆ V2 and H−1

z z ⊆ B2. Finally, we conclude

|h| ∗ |k|(z) ≥
∫
Hz

|h(y)||k(y−1z)|dλ(y) ≥ R2

72
λ(V )ϕ−1

(
1

‖χV ‖

)
ψ−1

(
1

‖χB‖

)
≥

R2

72
λ(V )ϕ−1

(
1

‖χV ‖

)
ψ−1

(
1

2‖χC‖

)
(16)

≥ 2nψ−1

(
1

2‖χC‖

)
,

whence ∥∥∥∥ψ( |h| ∗ |k|n

)∥∥∥∥ ≥ ∥∥∥∥ψ(2ψ−1

(
1

2‖χC‖

))
χC

∥∥∥∥ ≥ 1.

Therefore
∥∥|h| ∗ |k|∥∥

Eψ
≥ n, which ends the proof. �

Remark 3.12. The amenability hypothesis cannot be dropped in Theorem 3.11 because in [27]

R.A. Kunze and E.M. Stein show that the multiplication group of real matrices with determinant 1,

G = SL(2,R), satisfies Lp(G) ∗ L2(G) ⊂ L2(G) for 1 ≤ p < 2.

Theorem 3.13. Assume that G is a non-compact but locally compact group and ϕ,ψ are Young

functions with ϕ(bϕ) > 0, ψ(bψ) > 0, satisfying

lim inf
x→0

ϕ−1(x)ψ−1(x)

x
=∞.

(1.) If E is a real space, then for every compact set V with λ(V ) > 0, the set

FV =
{

(f, g) ∈ Eϕ × Eψ : f ∗ g(x) is well defined in some point x ∈ V
}

is of first category in Eϕ × Eψ.

(2.) If E is complex, then for every compact set V with λ(V ) > 0, the set

F ′V =
{

(f, g) ∈ Eϕ × Eψ : |f | ∗ |g|(x) is finite at some point x ∈ V
}

is of first category in Eϕ × Eψ.

Proof. We prove (1.).

Notice first that FV =
⋃
n∈N(F+

n ∪ F−n ), where

F+
n =

{
(f, g) ∈ Eϕ × Eψ : ∃ x ∈ V, ∀H ∈Mλ,

∫
H
f(y)g(y−1x)dλ(y) < n

}
,

F−n =

{
(f, g) ∈ Eϕ × Eψ : ∃ x ∈ V, ∀H ∈Mλ,

∫
H
f(y)g(y−1x)dλ(y) > −n

}
.

We will prove that for every n ∈ N, F+
n is nowhere dense (the case of F−n is the same).

We can assume that V is symmetric and contains the identity element. Since G is not compact,

we can choose a sequence (an)n ⊂ G such that for n 6= m, anV
2 ∩ amV 2 = ∅ = V a−1

n ∩ V a−1
m , and

∆(an) ≤ 1.

Fix n ∈ N. Take (f, g) ∈ Eϕ×Eψ and R > 0. Pick a natural number ` such that if A =
⋃`
k=1 V a

−1
k

and B =
⋃`
k=1 akV

2, then ‖χA‖ ≤ (K + 1)λ(A), ‖χA‖ϕ(bϕ) > 1, ‖χB‖ψ(bψ) > 1 and

R2

72

λ(V )

λ(V 2)

‖χA‖
K + 1

ϕ−1

(
1

‖χA‖

)
ψ−1

(
1

‖χA‖

)
> n.
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Observe that

‖χB−1‖ = ξE
(
λ(B−1)

)
= ξE

(
l∑

k=1

λ(V 2)∆(a−1
k )

)
= ξE

(
λ(V 2)

λ(V )

l∑
k=1

λ(V )∆(a−1
k )

)
≤

λ(V 2)

λ(V )
ξE

(
l∑

k=1

λ(V )∆(a−1
k )

)
=
λ(V 2)

λ(V )
ξE(λ(A)) =

λ(V 2)

λ(V )
||χA||

This, together with the fact that λ(B) ≤ λ(B−1) (because ∆(a−1
k ) ≥ 1), implies that

R2

72
λ(A)ϕ−1

(
1

‖χA‖

)
ψ−1

(
1

‖χB‖

)
> n.

Now let r < R/6 be such that

(18) λ(A)− Sξ−1
E

(
6r

R
‖χB‖

)
− ξ−1

E

(
6r

R
‖χA‖

)
≥ 1

2
λ(A),

where S := supx∈B ∆(x−1).

Define Mf , Mg and functions f̃ , g̃ on G as in Theorem 3.7 (for sets A, B and functions ϕ,ψ,

respectively). Then

‖f − f̃‖Eϕ = ‖g − g̃‖Eψ = R/3 < R.

Hence B
(
(f̃ , g̃), r

)
⊂ B

(
(f, g), R

)
. It remains to be shown that B

(
(f̃ , g̃), r

)
∩F+

n = ∅. For this reason,

take (h, k) ∈ B
(
(f̃ , g̃), r

)
. Set

A1 = {x ∈ A : |h(x)| ≤Mf/2}, B1 = {x ∈ B : |k(x)| ≤Mg/2}

and A2 = A \A1 and B2 = B \B1.

Then

‖χA1‖ ≤
6r

R
‖χA‖ and ‖χB1‖ ≤

6r

R
‖χB‖.

Also, in view of (18) we get

(19) λ(A)− λ(B−1
1 )− λ(A1) ≥ 1

2
λ(A)

Take z ∈ V and consider the set

H = A2 ∩ zB−1
2 .

Then H ⊂ A2 and H−1z ⊂ B2. Also, by (19),

λ(H) ≥ 1

2
λ(A).

Finally, we have∫
H
h(y)k(y−1z) dλ(y) ≥

MfMg

4
λ(H) =

R2

72
λ(A)ϕ−1

(
1

‖χA‖

)
ψ−1

(
1

‖χB‖

)
> n.

Therefore (h, k) /∈ F+
n . Hence we proved (1.).

The proof of (2.) is essentially the same - we just have to consider sets

F ′n :=

{
(f, g) ∈ Eϕ × Eψ : ∃ x ∈ V, ∀H ∈Mλ,

∫
H
|f(y)||g(y−1x)|dλ(y) < n

}
.

�
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Theorem 3.14. Assume that G is a non-unimodular locally compact group and ϕ, ψ are Young

functions with lim
t→0

ϕ(t)/t = 0, ϕ(bϕ) > 0 and ψ(bψ) > 0.

(1.) If E is real, then for every compact set V with λ(V ) > 0, the set

FV =
{

(f, g) ∈ Eϕ × Eψ : f ∗ g is well defined in some point x ∈ V
}

is of first category in Eϕ × Eψ.

(2.) If E is complex, then for every compact set V with λ(V ) > 0, the set

F ′V =
{

(f, g) ∈ Eϕ × Eψ : |f | ∗ |g|(x) is finite at some point x ∈ V
}

is of first category in Eϕ × Eψ.

Proof. Again, we will just prove (1.). Proceeding as in the previous proof, we will show that each set

F+
n =

{
(f, g) ∈ Eϕ × Eψ : ∃ x ∈ V, ∀H ∈Mλ,

∫
H
f(y)g(y−1x)dλ(y) < n

}
.

is nowhere dense.

We can assume that V is symmetric, contains the identity element and 1
||χV 2 || < ψ(bψ). Fix a

natural number n ∈ N. Take (f, g) ∈ Eϕ × Eψ and R > 0. Since lim
t→0

ϕ−1(t)/t = ∞, there is

ϕ(bϕ) > t0 > 0 such that for any 0 < t ≤ t0,

(20)
R2

72(K + 1)

ϕ−1(t)

t
ψ−1

(
1

‖χV 2‖

)
> n.

Since G is not unimodular, there is b ∈ G such that ∆(b) > (supx∈V ∆(x))4 + 1. This implies that

for every distinct m, k ∈ N, V bm∩V bk = ∅ and b−mV 2∩b−kV 2 = ∅. Also, since ξE(s)→∞ as s→∞,

we can take k0 ∈ N such that for every k ≥ k0 we have ‖χV bk‖ ≥ 1/t0 and ‖χV bk‖ ≤ (K + 1)λ(V bk).

Define

A := V bk0 , B := b−k0V 2.

Then ‖χA‖ ≥ 1/t0 and λ(B) = λ(V 2). So by (20) we have

(21)
R2

72
ϕ−1

(
1

‖χA‖

)
ψ−1

(
1

‖χB‖

)
λ(A) > n.

Now let r < R/6 be such that

(22) λ(A)− Sξ−1
E

(
6r

R
‖χB‖

)
− ξ−1

E

(
6r

R
‖χA‖

)
≥ 1

2
λ(A),

where S := supx∈B ∆(x−1).

Define Mf , Mg and functions f̃ and g̃ on G as in Theorem 3.7.

Then

‖f − f̃‖Eϕ = ‖g − g̃‖Eψ = R/3 < R.

Hence B
(
(f̃ , g̃), r

)
⊂ B

(
(f, g), R

)
. It remains only to be shown that B

(
(f̃ , g̃), r

)
∩ F+

n = ∅.
Let (h, k) ∈ B

(
(f̃ , g̃), r

)
. Put

A1 = {x ∈ A : |h(x)| ≤Mf/2}, B1 = {x ∈ B : |k(x)| ≤Mg/2}

and A2 = A \A1 and B2 = B \B1.

Hence

‖χA1‖ ≤
6r

R
‖χA‖ and ‖χB1‖ ≤

6r

R
‖χB‖.
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Also, in view of (22), we get

(23) λ(A)− λ(B−1
1 )− λ(A1) ≥ 1

2
λ(A)

Take z ∈ V and consider the set

H = A2 ∩ zB−1
2 .

Then H ⊂ A2 and H−1z ⊂ B2. Also by (23),

λ(H) ≥ 1

2
λ(A)

Finally,∫
H
h(y)k(y−1z) dλ(y) ≥

MfMg

4
λ(H) =

R2

72
ϕ−1

(
1

‖χA‖

)
ψ−1

(
1

‖χB‖

)
λ(A)

(21)
> n,

so (h, k) /∈ F+
n . �

4. subsets related to pointwise product

In this section we study a similar problem for Calderón-Lozanowskĭi spaces under pointwise mul-

tiplication. As it may be expected in this case we encounter less difficulties and we can make much

less assumptions.

Let (Ω,Σ, µ) be a complete σ-finite measure space and E be a Banach ideal in L0(Ω). Also let

Σ+ = {A ∈ Σ : 0 < µ(A) <∞}. By our assumptions, Σ+ 6= ∅. Additionally, we assume that:

for every A ∈ Σ+, χA ∈ E.

We start this section with the following lemma.

Lemma 4.1. Let Eϕ1, Eϕ2 and Eϕ3 be Calderón-Lozanowskĭi spaces, A ∈ Σ+, s1, s2 > 0, C ∈ (0, 1),

and fi, gi,∈ Eϕi, i = 1, 2, be such that |gi(x)| ≥ 1 for i = 1, 2 and x ∈ A. Assume that

∞ > ‖χA‖ >
1

ϕ1

(
1−C
s1

) +
1

ϕ2

(
1−C
s2

)
and ‖(fi − gi)χA‖Eϕi ≤ si for i = 1, 2. Then

‖f1 · f2‖Eϕ3 ≥
C2

ϕ−1
3

(‖χA‖ − 1

ϕ1

(
1−C
s1

) − 1

ϕ2

(
1−C
s2

)
)−1

 .

Proof. Let Ai = {x ∈ A : |fi(x)| < C|gi(x)|}, i = 1, 2. If x ∈ Ai, then

|fi(x)− gi(x)| ≥
∣∣|gi(x)| − |fi(x)|

∣∣ ≥ (1− C)|gi(x)| ≥ (1− C).

We will prove that

(24) ‖χAi‖ ≤
1

ϕi

(
1−C
si

) .
It holds true if ‖χAi‖ = 0. Assume that ‖χAi‖ > 0. Then

si ≥ ‖(fi − gi)χAi‖Eϕi ≥ (1− C)‖χAi‖Eϕi =
1− C

ϕ−1
i

(
1

‖χAi‖

) .
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Thus
1

‖χAi‖
≥ ϕi

(
1− C
si

)
and consequently we obtain (24). Note that

χA = χA\(A1∪A2) + χA∩(A1∪A2)=χA\(A1∪A2) + χA1∪A2 ≤ χA\(A1∪A2) + χA1 + χA2 .

Therefore

‖χA‖ ≤ ‖χA\(A1∪A2) + χA1 + χA2‖ ≤ ‖χA\(A1∪A2)‖+ ‖χA1‖+ ‖χA2‖

and consequently

‖χA\(A1∪A2)‖ ≥ ‖χA‖ − ‖χA1‖ − ‖χA2‖
(24)

≥ ‖χA‖ −
1

ϕ1

(
1−C
s1

) − 1

ϕ2

(
1−C
s2

) .
Since |fi(x)| ≥ C for x ∈ A \Ai, we obtain

‖f1 · f2‖Eϕ3 ≥ ‖C
2χA\(A1∪A2)‖Eϕ3

=
C2

ϕ−1
3

(
‖χA\(A1∪A2)‖−1

)
≥ C2

ϕ−1
3

(‖χA‖ − 1

ϕ1

(
1−C
s1

) − 1

ϕ2

(
1−C
s2

)
)−1

 .

�

The following theorem generalizes Theorem 2.4 in [4] and Theorem 8 in [40].

Theorem 4.2. Let Eϕ1, Eϕ2, Eϕ3 be Calderón-Lozanowskiĭ spaces with Σ+ 6= ∅. Assume that aϕ3 = 0

and for any ε > 0 there is A ∈ Σ+ such that 1
||χA||E ≤ min{ϕ1(bϕ1), ϕ2(bϕ2)} and

(25)
‖χA‖Eϕ1 · ‖χA‖Eϕ2

‖χA‖Eϕ3
=

ϕ−1
3

(
1
‖χA‖

)
ϕ−1

1

(
1
‖χA‖

)
· ϕ−1

2

(
1
‖χA‖

) ≤ ε.
Then the set F = {(f1, f2) ∈ Eϕ1 × Eϕ2 : f1 · f2 ∈ Eϕ3} is σ − 2

3 -lower porous.

Proof. We will show that for any n ∈ N, the set Fn = {(f1, f2) ∈ Eϕ1 × Eϕ2 : ‖f1 · f2‖Eϕ3 < n} is 2
3 -

lower porous. Let δ ∈ (0, 1/3). Then 1−δ
δ > 2, and therefore there is a C ∈ (0, 1) with (1−C)(1−δ)

δ > 2.

Let k > 1 be a real number such that

(26)
(1− C)(1− δ)

δ
= 2k.

Let R > 0 and A ∈ Σ+ be such that 1
||χA||E ≤ min{ϕ1(bϕ1), ϕ2(bϕ2)} and

(27)
(C(1− δ)R)2

nk
k−1

>
ϕ−1

3

(
1
‖χA‖

)
ϕ−1

1

(
1
‖χA‖

)
· ϕ−1

2

(
1
‖χA‖

) .
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Put t = 1
‖χA‖ . Since ϕi is convex, we have ϕi(2kϕ

−1
i (t)) ≥ 2kt for i = 1, 2. Thus by (26)

1

t
− 1

ϕ1

(
(1−C)(1−δ)

δ ϕ−1
1 (t)

) − 1

ϕ2

(
(1−C)(1−δ)

δ ϕ−1
2 (t)

) =
1

t
− 1

ϕ1(2kϕ−1
1 (t))

− 1

ϕ2(2kϕ−1
2 (t))

(28)

≥ 1

t
− 1

kt
=
k − 1

kt
.(29)

Since ϕ−1
3 is concave and increasing, using (27), (28) and the fact that ϕ−1

3 (0) = 0 (which follows

from aϕ3 = 0), we obtain

(C(1− δ)R)2

n

(27)
>

k
k−1ϕ

−1
3 (t)

ϕ−1
1 (t) · ϕ−1

2 (t)
≥

ϕ−1
3 ( tk

k−1)

ϕ−1
1 (t) · ϕ−1

2 (t)

(28)

≥

ϕ−1
3

(1
t −

1

ϕ1

(
(1−C)(1−δ)

δ
·ϕ−1

1 (t)
) − 1

ϕ2

(
(1−C)(1−δ)

δ
·ϕ−1

2 (t)
)
)−1


ϕ−1

1 (t) · ϕ−1
2 (t)

.

Hence

(30)
(C(1− δ)R)2 · ϕ−1

1 (t) · ϕ−1
2 (t)

ϕ−1
3

(1
t −

1

ϕ1

(
(1−C)(1−δ)

δ
·ϕ−1

1 (t)
) − 1

ϕ2

(
(1−C)(1−δ)

δ
·ϕ−1

2 (t)
)
)−1

 > n.

Put Mi = (1− δ)Rϕ−1
i (t), i = 1, 2. Then ‖MiχA‖Eϕi = Mi

ϕ−1
i (t)

= (1− δ)R. Let

f̃i(y) :=


fi(y) y /∈ A
fi(y) +Mi Re

(
fi(y)

)
≥ 0, y ∈ A

fi(y)−Mi Re
(
fi(y)

)
< 0, y ∈ A.

We have

‖fi − f̃i‖Eϕi = ‖MiχA‖Eϕi = (1− δ)R.

Hence B((f̃1, f̃2), δR) ⊂ B((f1, f2), R). We will show that B((f̃1, f̃2), δR) ∩ Fn = ∅. Let (h1, h2) ∈
B((f̃1, f̃2), δR). Then

δR ≥ ‖hi − f̃i‖Eϕi ≥ ‖(hi − f̃i)χA‖Eϕi = Mi

∥∥∥∥∥
(
hi
Mi
− f̃i
Mi

)
χA

∥∥∥∥∥
Eϕi

.
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Note that
∣∣∣ f̃i(x)
Mi

∣∣∣ ≥ 1 for x ∈ A. Finally

‖h1 · h2‖Eϕ3 = M1 ·M2

∥∥∥∥ h1

M1
· h2

M2

∥∥∥∥
Eϕ3

≥M1 ·M2 ·
C2

ϕ−1
3

((
‖χA‖ − 1

ϕ1( 1−C
δR

M1)
− 1

ϕ2( 1−C
δR

M2)

)−1
)

=
(C(1− δ)R)2ϕ−1

1 (t) · ϕ−1
2 (t)

ϕ−1
3

(‖χA‖ − 1

ϕ1

(
(1−C)(1−δ)

δ
ϕ−1
1 (t)

) − 1

ϕ2

(
(1−C)(1−δ)

δ
ϕ−1
1 (t)

)
)−1


(30)
> n.

Where the first inequality follows from Lemma 4.1 used for A, C, fi := hi
Mi

, gi := f̃i
Mi

, si := δR
Mi

.

Therefore (h1, h2) /∈ Fn. �

A Banach ideal space E is called order continuous if for every f ∈ E and every sequence {An}
satisfying An ↓ ∅ (that is An ⊃ An+1 and µ (

⋂∞
n=1An) = 0), we have that ‖fχAn‖E ↓ 0. It is easy to

see that, in the setting of the previous section, the order continuity of E implies the continuity of the

fundamental function ξE at 0.

Theorem 4.3. Let ϕ1, ϕ2 and ϕ3 be Young functions with bϕ3 =∞ and E be a Banach ideal space

with order continuous norm. If there exists (h, k) ∈ Eϕ1 × Eϕ2 such that h · k /∈ Eϕ3, then the set

F := {(f, g) ∈ Eϕ1 × Eϕ2 : f · g ∈ Eϕ3}

is of the first category in Eϕ1 × Eϕ2.

Proof. For every u, v > 0, define F vu := {(f, g) ∈ Eϕ1×Eϕ2 : Iϕ3(vf ·g) < u}. Since F =
⋃
u,v∈N F

v
u , we

only have to show that for every u, v > 0, F vu is nowhere dense. Fix u, v > 0 and let (f, g) ∈ Eϕ1×Eϕ2

and R > 0. Set

f̃(y) :=

 f(y) + R
2‖h‖Eϕ1

Re
(
f(y)

)
≥ 0

f(y)− R
2‖h‖Eϕ1

Re
(
f(y)

)
< 0

g̃(y) :=

 g(y) + R
2‖k‖Eϕ1

Re
(
g(y)

)
≥ 0

g(y)− R
2‖k‖Eϕ1

Re
(
g(y)

)
< 0

Then f̃ ∈ Eϕ1 and g̃ ∈ Eϕ2 . Also, obviously ‖f̃ − f‖Eϕ1 = R
2 = ‖g̃ − g‖Eϕ2 and f̃ · g̃ /∈ Eϕ3 . Hence

Iϕ3(v4 f̃ · g̃) =∞. Now for every n ∈ N, put

An :=
{
x ∈ Ω : n > |f̃(x)| > n−1

}
∩
{
x ∈ Ω : n > |g̃(x)| > n−1

}
.

Since f̃ ∈ Eϕ1 and g̃ ∈ Eϕ2 , we have that ‖χAn‖E < ∞ for each n ∈ N. Also, if we put A :=⋃
n∈NAn = {x ∈ Ω :∞ > |f̃(x) · g̃(x)| > 0}, then Iϕ3(v4 f̃ · g̃ ·χA) =∞. Therefore, since every element

of E has an order continuous norm and bϕ3 =∞, there exists m ∈ N such that

∞ > Iϕ3

(v
4
f̃ · g̃ · χAm

)
> u.
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By the order continuity of E, there exists δ > 0 such that for every measurable subset B ⊂ Am with

µ(B) ≤ δ, we have

(31) Iϕ3

(v
4
f̃ · g̃ · χAm\B

)
> u.

Now choose r ∈ (0, 1
2R) such that for every i = 1, 2 we have

(32) ϕi

(
1

2mr

)
>

2

δ
.

Assume that (d, l) ∈ Eϕ1 × Eϕ2 is such that (d, l) ∈ B
(
(f̃ , g̃), r

)
. Put

C :=

{
x ∈ Am : |d(x)| ≤ 1

2
|f̃(x)|

}
,

D :=

{
x ∈ Am : |l(x)| ≤ 1

2
|g̃(x)|

}
.

Then we have

r > ‖f̃ − d‖Eϕ1 ≥
∥∥∥∥1

2
f̃χC

∥∥∥∥
Eϕ1

≥
∥∥∥∥ 1

2m
χC

∥∥∥∥
Eϕ1

=
1

2mϕ−1
1

(
1

‖χC‖E

) ,
provided that µ(C) > 0. Hence by (32), ‖χC‖E < δ

2 . Similarly, ‖χD‖E < δ
2 . Finally, by (31) we get

Iϕ3(vd · l) ≥ Iϕ3(vd · l · χAm\(C∪D)) ≥ Iϕ3

(v
4
f̃ · g̃ · χAm\(C∪D)

) (31)
> u.

Hence B
(
(f̃ , g̃), r

)
⊂ B

(
(f, g), R

)
and B

(
(f̃ , g̃), r

)
∩ F vu = ∅. This proves our claim. �
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[43] L. Zaj́ıček, On σ-porous sets in abstract spaces, Abstr. Appl. Anal., 5 (2005), 509–534,
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