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introduction — general problem

Balcerzak & Wachowicz — first results

There are topological function spaces X such that a natural multiplication f - g
is defined, but its result is not necessarily element of X. A general problem is
whether the set of those pairs (f, g) for which f - g ¢ X is topologically large.
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introduction — general problem

Balcerzak & Wachowicz — first results

There are topological function spaces X such that a natural multiplication f - g
is defined, but its result is not necessarily element of X. A general problem is
whether the set of those pairs (f, g) for which f - g ¢ X is topologically large.

Balcerzak & Wachowicz, 2000

The following sets

(i) {(x,y) € coxco: (D, xiyi)p21 is bounded},
(i) {(f,g) € L*[0,1] x L*[0,1] : [; |f - g| < oo}
are meager of type F,.
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introduction — general problem

Jachymski's extension of the classical Banach—Steinhaus theorem

A function ¢ : X — Ry is called L-subadditive, L > 1, if
e(x +y) < L(p(x) + ¢(y)) for any x,y € X.
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introduction — general problem

Jachymski's extension of the classical Banach—Steinhaus theorem

A function ¢ : X — Ry is called L-subadditive, L > 1, if
e(x +y) < L(p(x) + ¢(y)) for any x,y € X.

Jachymski, 2005, an extension of the classical Banach—Steinhaus theorem

Given k € N, let Xi, ..., Xx be Banach spaces, X = X if k =1, and

X =Xi X ...x X if k>1. Assume that L > 1, F,: X = R, (n € N) are
lower semicontinuous and such that all functions x; — Fp(x1, ..., Xk)
(i=1,...,k) are L-subadditive and even. Let E = {x € X : (Fa(x))52; is
bounded}. Then the following statements are equivalent:

(i) E is meager;
(i) E # X;
(iii) sup{Fn(x): n €N, ||x|| <1} = oo.
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introduction — general problem

Jachymski's extension of the classical Banach—Steinhaus theorem

A function ¢ : X — Ry is called L-subadditive, L > 1, if
e(x +y) < L(p(x) + ¢(y)) for any x,y € X.

Jachymski, 2005, an extension of the classical Banach—Steinhaus theorem

Given k € N, let Xi, ..., Xx be Banach spaces, X = X if k =1, and

X =Xi X ...x X if k>1. Assume that L > 1, F,: X = R, (n € N) are
lower semicontinuous and such that all functions x; — Fp(x1, ..., Xk)
(i=1,...,k) are L-subadditive and even. Let E = {x € X : (Fa(x))52; is
bounded}. Then the following statements are equivalent:

(i) E is meager;
(i) E # X;
(iii) sup{Fn(x): n €N, ||x|| <1} = oo.

Balcerzak & Wachowicz, 2000

The set E = {(x,y) € co X o : (D1, Xiyi)a21 is bounded} is meager.
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introduction — general problem

Further improvement of Jachymski's result

Let X be a metric space. B(x, R) stands for the ball with a radius R centered
at a point x. Let ¢ € (0, 1].
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introduction — general problem

Further improvement of Jachymski's result

Let X be a metric space. B(x, R) stands for the ball with a radius R centered
at a point x. Let ¢ € (0,1]. We say that M C X is c-lower porous, if

Vx e M IiminfM

>
R—0T R -

)

N0

where

v(x,M,R) =sup{r >0:3z€ X B(z,r) C B(x,R)\ M}.
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introduction — general problem

Further improvement of Jachymski's result

Let X be a metric space. B(x, R) stands for the ball with a radius R centered
at a point x. Let ¢ € (0,1]. We say that M C X is c-lower porous, if

Vx e M IiminfM

>
R—0T R -

)

N0

where
v(x,M,R) =sup{r >0:3z€ X B(z,r) C B(x,R)\ M}.

At first, we were interested in a further generalization of Jachymski's theorem
changing meagerness by o-porosity.
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introduction — general problem

Further improvement of Jachymski's result

Let X be a metric space. B(x, R) stands for the ball with a radius R centered
at a point x. Let ¢ € (0,1]. We say that M C X is c-lower porous, if

Vx e M IiminfM

>
R—0T R -

)

N0

where
v(x,M,R) =sup{r >0:3z€ X B(z,r) C B(x,R)\ M}.

At first, we were interested in a further generalization of Jachymski's theorem
changing meagerness by o-porosity. It is not possible. To see it, consider the

following set:
n . | o0
E:{xeR: <Z Sm(l;(7TX)> is bounded}.
n=1

k=1
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introduction — general problem

Further improvement of Jachymski's result

Let X be a metric space. B(x, R) stands for the ball with a radius R centered
at a point x. Let ¢ € (0,1]. We say that M C X is c-lower porous, if

Vx e M IiminfM

>
R—0T R -

)

N0

where
v(x,M,R) =sup{r >0:3z€ X B(z,r) C B(x,R)\ M}.

At first, we were interested in a further generalization of Jachymski's theorem
changing meagerness by o-porosity. It is not possible. To see it, consider the

following set:
n . | o0
E:{xeR: <Z Sm(l;(7TX)> is bounded}.
n=1

k=1

Using Jachymski's Theorem for Fn(x) = >, _; | sin(k!mx)|/k we obtain that
this set is meager (E # R since it is of measure zero)
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introduction — general problem

Further improvement of Jachymski's result

Let X be a metric space. B(x, R) stands for the ball with a radius R centered
at a point x. Let ¢ € (0,1]. We say that M C X is c-lower porous, if

Vx e M IiminfM

>
R—0T R -

)

N0

where
v(x,M,R) =sup{r >0:3z€ X B(z,r) C B(x,R)\ M}.

At first, we were interested in a further generalization of Jachymski's theorem
changing meagerness by o-porosity. It is not possible. To see it, consider the

following set:
n . | o0
E:{xeR: <Z Sm(l;(7TX)> is bounded}.
n=1

k=1

Using Jachymski's Theorem for Fn(x) = >, _; | sin(k!mx)|/k we obtain that
this set is meager (E # R since it is of measure zero) and E is not o-upper
porous (it is well known example of such set).
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introduction — general problem

LP spaces, G & Strobin, 2010, J. Math. Anal. Appl.

Let (X, X, 1) be a measure space and p € (0,00]. For n € N and
P1, .-, Pn, r € (0, 00] we define the set

EPr==P) — {(f, .. F)ELP x .. x L7 fi-.. - fel}
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introduction — general problem

LP spaces, G & Strobin, 2010, J. Math. Anal. Appl.

Let (X, X, 1) be a measure space and p € (0,00]. For n € N and
P1, .-, Pn, r € (0, 00] we define the set

EPr==P) — {(f, .. F)ELP x .. x L7 fi-.. - fel}

Holder inequality

IFL =14+ L then PP = [P LP.

r
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introduction — general problem

LP spaces, G & Strobin, 2010, J. Math. Anal. Appl.

Let (X, X, 1) be a measure space and p € (0,00]. For n € N and
P1, .-, Pn, r € (0, 00] we define the set

EPr==P) — {(f, .. F)ELP x .. x L7 fi-.. - fel}

Holder inequality

IFL =14+ L then PP = [P LP.

M
+
I

{A€X:0< p(A) < o},
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introduction — general problem

LP spaces, G & Strobin, 2010, J. Math. Anal. Appl.

Let (X, X, 1) be a measure space and p € (0,00]. For n € N and
P1, .-, Pn, r € (0, 00] we define the set

EPr==P) — {(f, .. F)ELP x .. x L7 fi-.. - fel}

Holder inequality

IFL =14+ L then PP = [P LP.

Y, ={AeX:0< u(A) < oo},

Case when EPP) is |arge

If one of the following conditions holds:
(i) sup{u(A): Ae X} <ooand 0 < %—i—..‘—i-,}" <L
(ii) inf{u(A): A€ T }>0and L+ ..+ = > 1,

then EFPVP) = [P x L0,
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introduction — general problem

LP spaces, G & Strobin, 2010, J. Math. Anal. Appl.

Case when E,(p1 """ P) is small

Assume that one of the following conditions holds:
(i) &4+ >7andinf{u(A): A€ T} =0;
(i) p—ll + ...+ ;1,1 < 7 and sup{pu(A) : A€ X} = oo.

Then for any u > 0, the set

= ~1

Ev={(f, o f) €L X o X L7 ||fy - - o] < u}

is c-lower porous, where ¢ = ¢(p1, ..., pn). In particular, the set E(PooPn) g
o-c-lower porous.
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introduction — general problem

LP spaces, G & Strobin, 2010, J. Math. Anal. Appl.

Case when E,(p1 """ P) is small

Assume that one of the following conditions holds:
(i) &4+ >7andinf{u(A): A€ T} =0;
(i) p—ll + ...+ ;1,1 < = and sup{u(A): A€ X} = o0.

Then for any u > 0, the set

Si=os

Ev={(f, o f) €L X o X L7 ||fy - - o] < u}

is c-lower porous, where ¢ = ¢(p1, ..., pn). In particular, the set E(PooPn) g
o-c-lower porous.

Either EP1P") is o-c-lower porous or EP1P?) = [PL x . x [Pr.
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introduction — general problem

Lorentz spaces — G., Strobin & Chan Woo Yang, Cent. Eur. J. Math.

2013, 11(7), 1228-1242

Let (X, X, 1) be a measure space. Let p,q € (0, 0] be such that if p = oo,
then also g = occ.
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introduction — general problem

Lorentz spaces — G., Strobin & Chan Woo Yang, Cent. Eur. J. Math.

2013, 11(7), 1228-1242

Let (X, X, 1) be a measure space. Let p,q € (0, 0] be such that if p = oo,
then also g = co. A Lorentz space LP9(X, X, u) (LP7 in short) is the space of
all measurable functions with a finite quasinorm (the triangle inequality does
not hold)

(J5= prlhx 1FGl > ADFAT2A) ", if g < oo,

#llp.qa = supyso Au({x : [f(x)] > /\})%, if p < oo and g = oo;
supess |f], if p=q=occ.
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introduction — general problem

Lorentz spaces — G., Strobin & Chan Woo Yang, Cent. Eur. J. Math.

2013, 11(7), 1228-1242

Let (X, X, 1) be a measure space. Let p,q € (0, 0] be such that if p = oo,
then also g = co. A Lorentz space LP9(X, X, u) (LP7 in short) is the space of
all measurable functions with a finite quasinorm (the triangle inequality does
not hold)

(J5= prlhx 1FGl > ADFAT2A) ", if g < oo,

#llp.qa = supyso Au({x : [f(x)] > /\})%, if p < oo and g = oo;
supess |f], if p=q=occ.

[Flloe = 1fllo = (Jx [F17)/? for p > 1.
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introduction — general problem

Lorentz spaces — G., Strobin & Chan Woo Yang, Cent. Eur. J. Math.

2013, 11(7), 1228-1242

Efgf’37QI,~u,Pn7Qn) — {(fh . fn) CLPYI x L xLPP L f L f, € Lpﬁq}.
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introduction — general problem

Lorentz spaces — G., Strobin & Chan Woo Yang, Cent. Eur. J. Math.

2013, 11(7), 1228-1242

Eéfg’ql"“’p"’q") — {(fh . fn) CLPYI x L xLPP L f L f, € LPA,Q}.

Theorem

Let n € N and LP9 LPv9 .. LP9 be Lorentz spaces such that if p < oo, then
% == Fll + ...+ ;Tl,,- Then the following conditions are equivalent:
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introduction — general problem

Lorentz spaces — G., Strobin & Chan Woo Yang, Cent. Eur. J. Math.

2013, 11(7), 1228-1242

Eéfg’ql"“’p"’q") — {(fh . fn) CLPYI x L xLPP L f L f, € LPA,Q}.

Theorem

Let n € N and LP9 LPv9 .. LP9 be Lorentz spaces such that if p < oo, then
% == Fll + ...+ ;Tl,,- Then the following conditions are equivalent:

(a) the set ESP19Pmdn) ig oo ower porous in LP x ... x LP"% for some
a > 0;
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introduction — general problem

Lorentz spaces — G., Strobin & Chan Woo Yang, Cent. Eur. J. Math.

2013, 11(7), 1228-1242

Eéfg’ql"“’p"’q") — {(fh " fn) CLPYI x L xLPP L f L f, € LPA,Q}.

Let n € N and LP9 LPv9 .. LP9 be Lorentz spaces such that if p < oo, then
% == Fll + ...+ ;Tl,,- Then the following conditions are equivalent:

(a) the set ESP19Pmdn) ig oo ower porous in LP x ... x LP"% for some
a > 0;

(b) Eéf’éaqla“'apnaqn) 75 LPla‘h X ... X Lp"’q";
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introduction — general problem

Lorentz spaces — G., Strobin & Chan Woo Yang, Cent. Eur. J. Math.

2013, 11(7), 1228-1242

Ef()fgm,m,pnyqn) — {(fh . fn) CLPYI x L xLPP L f L f, € Lpﬁq}.

Let n € N and LP9 LPv9 .. LP9 be Lorentz spaces such that if p < oo, then
% == Fll + ...+ ;Tl,,- Then the following conditions are equivalent:

(a) the set ESP19Pmdn) ig oo ower porous in LP x ... x LP"% for some
a > 0;

(b) EfFy S Pmin) o | PLdL | x LPoitn;
(c) one of the conditions holds:

() T4 #0 and inf{u(A): A€ T4} =0and - +..4 - > 1

(i) X4+ # 0 and sup{u(A): A€ X} = o0 and é e L 2

(iii) u(X) = oo and min{ps, ..., pn} = o0 and p < oco.
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introduction — general problem

Orlicz spaces — Strobin, Math. Slovaca 66 (2016), no. 1, 245-256.

Let ¢ : [0,00) — [0,00) be a continuous non-decreasing and convex with
¥(0) =0, 9(t) > 0 for t >0, and lim¢—,o ¥(t) = co. It is so-called Young
function.
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introduction — general problem

Orlicz spaces — Strobin, Math. Slovaca 66 (2016), no. 1, 245-256.

Let ¢ : [0,00) — [0,00) be a continuous non-decreasing and convex with
¥(0) =0, 9(t) > 0 for t >0, and lim¢—,o ¥(t) = co. It is so-called Young

function.
LY(X, %, 1) (LY in short) is the set of all measurable functions f defined on X

such that [, ¢ (v|f|)dp < oo for some v > 0.
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introduction — general problem

Orlicz spaces — Strobin, Math. Slovaca 66 (2016), no. 1, 245-256.

Let ¢ : [0,00) — [0,00) be a continuous non-decreasing and convex with

¥(0) =0, 9(t) > 0 for t >0, and lim¢—,o ¥(t) = co. It is so-called Young
function.

LY(X, %, 1) (LY in short) is the set of all measurable functions f defined on X
such that [, ¥(v|f|)du < oo for some v > 0. Then L is a Banach space with
the following norm

£l = ot [ ol <1y,

The space LY is called the Orlicz space.
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introduction — general problem

Orlicz spaces — Strobin, Math. Slovaca 66 (2016), no. 1, 245-256.

Let ¢ : [0,00) — [0,00) be a continuous non-decreasing and convex with

¥(0) =0, 9(t) > 0 for t >0, and lim¢—,o ¥(t) = co. It is so-called Young
function.

LY(X, %, 1) (LY in short) is the set of all measurable functions f defined on X

such that [, ¥(v|f|)du < oo for some v > 0. Then L is a Banach space with
the following norm

£l = ot [ ol <1y,

The space LY is called the Orlicz space.
If p>1and ¢(t) = t°, then LY = L.
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introduction — general problem

Orlicz spaces — Strobin, Math. Slovaca 66 (2016), no. 1, 245-256.

Let ¢ : [0,00) — [0,00) be a continuous non-decreasing and convex with

¥(0) =0, 9(t) > 0 for t >0, and lim¢—,o ¥(t) = co. It is so-called Young
function.

LY(X, %, 1) (LY in short) is the set of all measurable functions f defined on X

such that [, ¥(v|f|)du < oo for some v > 0. Then L is a Banach space with
the following norm

£l = ot [ ol <1y,

The space LY is called the Orlicz space.
If p>1and ¢(t) = t°, then LY = L.

EQVr¥) = [(f, ) €LY x o x LY 0 fo o fy € LYY
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introduction — general problem

Orlicz spaces — Strobin, Math. Slovaca 66 (2016), no. 1, 245-256.

Theorem

Let ¥y # () and L¥,LY",...,L¥" be Orlicz spaces. Assume that one of the
conditions holds:

) v~ (1)
Y (O (1) Y (O (D)
@ the set F = {ﬁ A€ X, }is an interval.

Q lim:_o and lim:— o exists (finite or infinite)

Then the following conditions are equivalent:
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introduction — general problem

Orlicz spaces — Strobin, Math. Slovaca 66 (2016), no. 1, 245-256.

Theorem

Let ¥y # () and L¥,LY",...,L¥" be Orlicz spaces. Assume that one of the
conditions holds:

) v~ (1)
Y (O (1) Y (O (D)
@ the set F = {ﬁ A€ X, }is an interval.

Q lim:_o and lim:— o exists (finite or infinite)

Then the following conditions are equivalent:
(a) the set Eﬁl’”"w") is o-

2 _ il Y1 Yn.
~g-lower porous in L¥* x ... x L*7;

Szymon Gtab (and Filip Strobin) Topological size of sets in function spaces defined by pointwise product and c¢



introduction — general problem

Orlicz spaces — Strobin, Math. Slovaca 66 (2016), no. 1, 245-256.

Theorem

Let ¥y # () and L¥,LY",...,L¥" be Orlicz spaces. Assume that one of the
conditions holds:

) v~ (1)
Y (O (1) Y (O (D)
@ the set F = {ﬁ A€ X, }is an interval.

Q lim:_o and lim:— o exists (finite or infinite)

Then the following conditions are equivalent:

(a) the set Eﬁl’”"w") is o- "erl—lower porous in L¥* x ... x LY,

(b) EG/mr¥) g L% x L x LY,

Szymon Gtab (and Filip Strobin) Topological size of sets in function spaces defined by pointwise product and c¢



introduction — general problem

Orlicz spaces — Strobin, Math. Slovaca 66 (2016), no. 1, 245-256.

Theorem

Let ¥y # () and L¥,LY",...,L¥" be Orlicz spaces. Assume that one of the
conditions holds:

) v~ (1)
Y (O (1) Y (O (D)
@ the set F = {ﬁ A€ X, }is an interval.

Q lim:_o and lim:— o exists (finite or infinite)

Then the following conditions are equivalent:

(a) the set El(pw1 """ ¥n) is o- "erl—lower porous in L¥* x ... x LY,

(c) one of the conditions holds:

—1
(i) inf{u(A): A€ T} =0 and liminfr oo w?@i‘i’m —0;
-1
(i) sup{u(A): A€ X} = oo and liminfeo —r2 =0

V() s N
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introduction — general problem

Orlicz spaces — Strobin, Math. Slovaca 66 (2016), no. 1, 245-256.

If ¥(t) = tP, ¢¥i(t) = tP, then

—1 1
lim lw—(t)l =0 < lim 1t7p1 -0 lim tif(ﬁJr...Jr#) 0
20 ahy () -+ Yn (1) 50 o0 = m
1 1 1
= - > — 4+ -+ —
P P Pn
and
-1
lim %:0@ Il 44+ =
t=o0 ohr(t) - -y (t) p ) o
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introduction — general problem

Orlicz spaces — Strobin, Math. Slovaca 66 (2016), no. 1, 245-256.

Let LY, L¥1, ..., L¥" be Orlicz spaces. Then the following conditions are
equivalent:
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introduction — general problem

Orlicz spaces — Strobin, Math. Slovaca 66 (2016), no. 1, 245-256.

Let LY, L¥1, ..., L¥" be Orlicz spaces. Then the following conditions are
equivalent:

a) the set E¥1 %) is meager in L¥! x ... x LYn,
) g
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introduction — general problem

Orlicz spaces — Strobin, Math. Slovaca 66 (2016), no. 1, 245-256.

Let LY, L¥1, ..., L¥" be Orlicz spaces. Then the following conditions are
equivalent:

a) the set E¥1 %) is meager in L¥! x ... x LYn,
) g
(b) EG/mr¥) s L% x L x LY,

Szymon Gtab (and Filip Strobin) Topological size of sets in function spaces defined by pointwise product and c



introduction — general problem

G. & Strobin, Porosity and the LP-conjecture, Arch. Math. 95 (2010),

583-592.

Assume that G is a locally compact group and let p be a left—invariant Haar
measure on G.
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introduction — general problem

G. & Strobin, Porosity and the LP-conjecture, Arch. Math. 95 (2010),

583-592.

Assume that G is a locally compact group and let p be a left—invariant Haar
measure on G. If f| g are two measurable functions, x € G, then the
convolution of f and g in the point x is given by

fxg(x)= /G f(y)gly 'x) du(y).
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introduction — general problem

G. & Strobin, Porosity and the LP-conjecture, Arch. Math. 95 (2010),

583-592.

Assume that G is a locally compact group and let p be a left—invariant Haar
measure on G. If f| g are two measurable functions, x € G, then the
convolution of f and g in the point x is given by

fxg(x)= /G f(y)gly 'x) du(y).

Assume that p > 1. The famous LP-conjecture, stated by Zelazko and
Rajagopalan in 1960's, asserts that if for all f, g € LP, f xg € LP (thatis, f x g
is defined almost everywhere on G and belongs to L?), then G is compact.
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introduction — general problem

G. & Strobin, Porosity and the LP-conjecture, Arch. Math. 95 (2010),

583-592.

Assume that G is a locally compact group and let p be a left—invariant Haar
measure on G. If f| g are two measurable functions, x € G, then the
convolution of f and g in the point x is given by

fxg(x)= /G f(y)gly 'x) du(y).

Assume that p > 1. The famous LP-conjecture, stated by Zelazko and
Rajagopalan in 1960's, asserts that if for all f, g € LP, f xg € LP (thatis, f x g
is defined almost everywhere on G and belongs to L?), then G is compact.
During the next 30 years this conjecture had been established in special cases,
and, finally, in 1990 Saeki proved the LP-conjecture in its general form.
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introduction — general problem

G. & Strobin, Porosity and the LP-conjecture, Arch. Math. 95 (2010),

583-592.

Assume that G is a locally compact group and let p be a left—invariant Haar
measure on G. If f| g are two measurable functions, x € G, then the
convolution of f and g in the point x is given by

fxg(x)= /G f(y)gly 'x) du(y).

Assume that p > 1. The famous LP-conjecture, stated by Zelazko and
Rajagopalan in 1960's, asserts that if for all f, g € LP, f xg € LP (thatis, f x g
is defined almost everywhere on G and belongs to L?), then G is compact.
During the next 30 years this conjecture had been established in special cases,
and, finally, in 1990 Saeki proved the LP-conjecture in its general form.

Abtahi, Nasr—Isfahani and Rejali in 2007 proved that if G is not compact, then
there exist functions f, g € LP such that f x g is not well defined in the sense
that there exists a set K C G of a positive measure such that for any x € K,

f x g(x) = oo.
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introduction — general problem

G. & Strobin, Porosity and the LP-conjecture, Arch. Math. 95 (2010),

583-592.

Assume that G is locally compact but not compact topological group and p is
a Haar measure on G. If p, g > 1 are such that % + % < 1, then
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introduction — general problem

G. & Strobin, Porosity and the LP-conjecture, Arch. Math. 95 (2010),

583-592.

Assume that G is locally compact but not compact topological group and p is
a Haar measure on G. If p, g > 1 are such that % + % < 1, then

(i) For every compact subset K C G, the set
Ex ={(f,g) € L” x L9 : 3x € K f x g(x) is finite or infinite}

is o-c-lower porous for some ¢ > 0.
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introduction — general problem

G. & Strobin, Porosity and the LP-conjecture, Arch. Math. 95 (2010),

583-592.

Assume that G is locally compact but not compact topological group and p is
a Haar measure on G. If p, g > 1 are such that % + % < 1, then

(i) For every compact subset K C G, the set
Ex ={(f,g) € L” x L9 : 3x € K f x g(x) is finite or infinite}

is o-c-lower porous for some ¢ > 0.

(ii) If G is o-compact, then the set

E={(f,g) € " xL7:3x € G f«g(x) is finite or infinite}

is o-lower porous.
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introduction — general problem
Recent results

I. Akbarbaglu, G. , S. Maghsoudi, F. Strobin, Topological size of some subsets
in certain Calderén-Lozanowskii spaces, Adv. Math. 312 (2017), 737-763.
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introduction — general problem

Calderén-Lozanowskii spaces, Adv. Math. 312 (2017), 737-763.

For any Young function ¢ we define:

a, =sup{x €ER:p(x) =0} and b, =sup{x € R: p(x) < co}.
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introduction — general problem

Calderén-Lozanowskii spaces, Adv. Math. 312 (2017), 737-763.

For any Young function ¢ we define:
a, =sup{x €ER:p(x) =0} and b, =sup{x € R: p(x) < co}.

Let (2, X, u) be a complete o-finite measure space.
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introduction — general problem

Calderén-Lozanowskii spaces, Adv. Math. 312 (2017), 737-763.

For any Young function ¢ we define:
a, =sup{x €ER:p(x) =0} and b, =sup{x € R: p(x) < co}.

Let (2, X, 1) be a complete o-finite measure space. A Banach space
E = (E,| - ||lg) is called a Banach ideal space on Q if E is a linear subspace of
L°(Q) with the ideal property:
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introduction — general problem

Calderén-Lozanowskii spaces, Adv. Math. 312 (2017), 737-763.

For any Young function ¢ we define:
a, =sup{x €ER:p(x) =0} and b, =sup{x € R: p(x) < co}.

Let (2, X, 1) be a complete o-finite measure space. A Banach space

E = (E,| - ||lg) is called a Banach ideal space on Q if E is a linear subspace of
L°(Q) with the ideal property:

if f € E,g € L°%Q) and |g(t)| < |f(t)| for p-almost all t € Q, then g € E and
lglle < lIflle.
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introduction — general problem

Calderén-Lozanowskii spaces, Adv. Math. 312 (2017), 737-763.

For any Young function ¢ we define:
a, =sup{x €ER:p(x) =0} and b, =sup{x € R: p(x) < co}.

Let (2, X, 1) be a complete o-finite measure space. A Banach space

E = (E,| - ||lg) is called a Banach ideal space on Q if E is a linear subspace of
L°(Q) with the ideal property:

if f € E,g € L°%Q) and |g(t)| < |f(t)| for p-almost all t € Q, then g € E and
lglle < [Iflle.

Let I, : L°(R2) — [0, oc] be a semimodular defined by

P e
@ 00 otherwise.

Szymon Gtab (and Filip Strobin) Topological size of sets in function spaces defined by pointwise product and c



introduction — general problem

Calderén-Lozanowskii spaces, Adv. Math. 312 (2017), 737-763.

For any Young function ¢ we define:
a, =sup{x €ER:p(x) =0} and b, =sup{x € R: p(x) < co}.

Let (2, X, 1) be a complete o-finite measure space. A Banach space

E = (E,| - ||lg) is called a Banach ideal space on Q if E is a linear subspace of
L°(Q) with the ideal property:

if f € E,g € L°%Q) and |g(t)| < |f(t)| for p-almost all t € Q, then g € E and

lglle <Iflle-
Let I, : L°(R2) — [0, oc] be a semimodular defined by

P e
@ 00 otherwise.

The Calderdn-Lozanowskil space E, is the space

E, = {f € L°(Q) : I,(cf) < oo for some ¢ > 0}
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introduction — general problem

Calderén-Lozanowskii spaces, Adv. Math. 312 (2017), 737-763.

For any Young function ¢ we define:
a, =sup{x €ER:p(x) =0} and b, =sup{x € R: p(x) < co}.

Let (2, X, 1) be a complete o-finite measure space. A Banach space

E = (E,| - ||lg) is called a Banach ideal space on Q if E is a linear subspace of
L°(Q) with the ideal property:

if f € E,g € L°%Q) and |g(t)| < |f(t)| for p-almost all t € Q, then g € E and

lglle <Iflle-
Let I, : L°(R2) — [0, oc] be a semimodular defined by

P e
@ 00 otherwise.

The Calderdn-Lozanowskil space E, is the space
E, = {f € L°(Q) : I,(cf) < oo for some ¢ > 0}
with the Luxemburg norm

Ifllee =inf{c > 0:l,(f/c) <1}.
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introduction — general problem

-Lozanowskii spaces, Adv. Math. 312 (2017), 737-763.

The notion of Calderén-Lozanowskii space E,, generalize some known notions:

Szymon Gtab (and Filip Strobin) Topological size of sets in function spaces defined by pointwise product and c



introduction — general problem

Calderén-Lozanowskii spaces, Adv. Math. 312 (2017), 737-763.

The notion of Calderén-Lozanowskii space E,, generalize some known notions:

Q If E = LY(Q), then E, is the Orlicz space L¥(Q) equipped with the
Luxemburg norm.
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introduction — general problem

Calderén-Lozanowskii spaces, Adv. Math. 312 (2017), 737-763.

The notion of Calderén-Lozanowskii space E,, generalize some known notions:
Q If E = LY(Q), then E, is the Orlicz space L¥(Q) equipped with the
Luxemburg norm.
@ If E is a Lorentz function (sequence) space, then E, is the corresponding

Orlicz-Lorentz function (sequence) space equipped with the Luxemburg
norm.

Szymon Gtab (and Filip Strobin) Topological size of sets in function spaces defined by pointwise product and c



introduction — general problem

Calderén-Lozanowskii spaces, Adv. Math. 312 (2017), 737-763.

The notion of Calderén-Lozanowskii space E,, generalize some known notions:

Q If E = LY(Q), then E, is the Orlicz space L¥(Q) equipped with the
Luxemburg norm.

@ If E is a Lorentz function (sequence) space, then E, is the corresponding
Orlicz-Lorentz function (sequence) space equipped with the Luxemburg
norm.

Q If o(t) =1t", 1 < p < oo, then E, is in this case the p convexification E*)
of E with the norm ||| ) = |||F]PI|¥".
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introduction — general problem

Calderén-Lozanowskii spaces, Adv. Math. 312 (2017), 737-763.

The notion of Calderén-Lozanowskii space E,, generalize some known notions:

Q If E = LY(Q), then E, is the Orlicz space L¥(Q) equipped with the
Luxemburg norm.

@ If E is a Lorentz function (sequence) space, then E, is the corresponding
Orlicz-Lorentz function (sequence) space equipped with the Luxemburg
norm.

Q If o(t) =1t", 1 < p < oo, then E, is in this case the p convexification E*)
of E with the norm ||| ) = |||F]PI|¥".

Q If o(t) =0 for t € [0,1] and ¢(t) = oo otherwise, then E, = L*°(Q2) and
the corresponding norms are equal.
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introduction — general problem

Calderén-Lozanowskii spaces — pointwise multiplication

Let (2, X, 1) be a complete o-finite measure space and E be a Banach ideal in
L°(Q) such that xa € E for every A€ ¥,

Theorem

Let E,,, E,,, E,, be Calderén-Lozanowskii spaces with ¥, # 0.
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introduction — general problem

Calderén-Lozanowskii spaces — pointwise multiplication

Let (2, X, 1) be a complete o-finite measure space and E be a Banach ideal in
L°(Q) such that xa € E for every A€ ¥,

Theorem

Let EW, E,,, E,, be Calderén-Lozanowskii spaces with ¥, # (). Assume that
= 0 and for any € > 0 there is A € L such that

ez < min{@1(by, ), p2(by,)} and
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introduction — general problem

Calderén-Lozanowskii spaces — pointwise multiplication

Let (2, X, 1) be a complete o-finite measure space and E be a Banach ideal in
L°(Q) such that xa € E for every A€ ¥,

Let EW, E,,, E,, be Calderén-Lozanowskii spaces with ¥, # (). Assume that
= 0 and for any € > 0 there is A € L such that

ez < min{@1(by, ), p2(by,)} and

-1 1
Ixalles, - Ixalle,, o' (1)

b, ~ 55 () o= ()
Xalle, P1 \Txall ) %2\ Txal

<e. (1)
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introduction — general problem

Calderén-Lozanowskii spaces — pointwise multiplication

Let (2, X, 1) be a complete o-finite measure space and E be a Banach ideal in
L°(Q) such that xa € E for every A€ ¥,

Let EW, E,,, E,, be Calderén-Lozanowskii spaces with ¥, # (). Assume that
= 0 and for any € > 0 there is A € L such that

ez < min{@1(by, ), p2(by,)} and

—1 1
bealle, e, _ ¢ (mm) (1)

XAllE k) et ()
H H ©3 2% (XA“) P2 (HXA“)

Then the set F = {(f,£) € E,, X E,, - i+ f € Epy} is 0 — 5-lower porous.
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introduction — general problem

Calderén-Lozanowskit spaces — pointwise multiplication

A Banach ideal space E is called order continuous if for every f € E and every
sequence {A,} satisfying A, | 0 (that is A, D Any1 and p (02, An) = 0), we
have that ||fxa,|le | 0.
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introduction — general problem

Calderén-Lozanowskii spaces — pointwise multiplication

A Banach ideal space E is called order continuous if for every f € E and every
sequence {A,} satisfying A, | 0 (that is A, D Any1 and p (02, An) = 0), we
have that ||fxa,|le | 0.

Theorem

Let o1, ¢2 and 3 be Young functions with b,, = 0o and E be a Banach ideal
space with order continuous norm.
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introduction — general problem

Calderén-Lozanowskii spaces — pointwise multiplication

A Banach ideal space E is called order continuous if for every f € E and every
sequence {A,} satisfying A, | 0 (that is A, D Any1 and p (02, An) = 0), we
have that ||fxa,|le | 0.

Theorem

Let o1, ¢2 and 3 be Young functions with b,, = 0o and E be a Banach ideal
space with order continuous norm. If there exists (h, k) € E,, X E,, such that
h-k¢E,,
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introduction — general problem

Calderén-Lozanowskii spaces — pointwise multiplication

A Banach ideal space E is called order continuous if for every f € E and every
sequence {A,} satisfying A, | 0 (that is A, D Any1 and p (02, An) = 0), we
have that ||fxa,|le | 0.

Theorem

Let o1, ¢2 and 3 be Young functions with b,, = 0o and E be a Banach ideal
space with order continuous norm. If there exists (h, k) € E,, X E,, such that
h-k ¢ E,,, then the set

{(f,g) € E<P1 X Etpz : f~g € E<P3}

is of the first category in E,, X E,,.
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introduction — general problem

Calderén-Lozanowskii spaces — convolution

let G be a locally compact group with a fixed left Haar measure .
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introduction — general problem

-Lozanowskii spaces — convolution

let G be a locally compact group with a fixed left Haar measure A. Let E be a
Banach ideal in L°(G) such that
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introduction — general problem

Calderén-Lozanowskii spaces — convolution

let G be a locally compact group with a fixed left Haar measure A. Let E be a

Banach ideal in L°(G) such that

(a) if f, 7 f for some nonnegative functions f, € E, n € N and f € L°(G),
then ||fs||e — ||f||e provided f € E, and ||fs||e — oo if f ¢ E.
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introduction — general problem

Calderén-Lozanowskii spaces — convolution

let G be a locally compact group with a fixed left Haar measure A. Let E be a
Banach ideal in L°(G) such that

(a) if f, 7 f for some nonnegative functions f, € E, n € N and f € L°(G),
then ||fs||e — ||f||e provided f € E, and ||fs||e — oo if f ¢ E.

(b) if V C G and A(V) < oo, then xv € E;
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introduction — general problem

Calderén-Lozanowskii spaces — convolution

let G be a locally compact group with a fixed left Haar measure A. Let E be a

Banach ideal in L°(G) such that

(a) if f, 7 f for some nonnegative functions f, € E, n € N and f € L°(G),
then ||fs||e — ||f||e provided f € E, and ||fs||e — oo if f ¢ E.

(b) if V C G and A(V) < oo, then xv € E;

(c) if V.C G and A(V) < oo, then there is Cy < oo such that
Jy IfldX < Cv||f||e for every f € E.

Szymon Gtab (and Filip Strobin)
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introduction — general problem

Calderén-Lozanowskii spaces — convolution

let G be a locally compact group with a fixed left Haar measure A. Let E be a
Banach ideal in L°(G) such that
(a) if f, 7 f for some nonnegative functions f, € E, n € N and f € L°(G),
then ||fs||e — ||f||e provided f € E, and ||fs||e — oo if f ¢ E.
(b) if V C G and A(V) < oo, then xv € E;
(c) if V.C G and A(V) < oo, then there is Cy < oo such that
Jy IfldX < Cv||f||e for every f € E.

f,g € L°(G) are called equimeasurable, if
A{x € G |f(x)] > t}) = A({x € G : |g(x)| > t}) for every t > 0.
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introduction — general problem

Calderén-Lozanowskii spaces — convolution

let G be a locally compact group with a fixed left Haar measure A. Let E be a

Banach ideal in L°(G) such that

(a) if f, 7 f for some nonnegative functions f, € E, n € N and f € L°(G),
then ||fs||e — ||f||e provided f € E, and ||fs||e — oo if f ¢ E.

(b) if V C G and A(V) < oo, then xv € E;

(c) if V.C G and A(V) < oo, then there is Cy < oo such that
Jy IfldX < Cv||f||e for every f € E.

f,g € L°(G) are called equimeasurable, if

A{x € G |f(x)] > t}) = A({x € G : |g(x)| > t}) for every t > 0.

We additionally assume that E is rearrangement-invariant, i.e

(d) for every equimeasurable real functions f, g € E, ||f||e = ||g]|e-
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introduction — general problem

-Lozanowskii spaces — convolution

Note that if A(V) = A(U), then xv and xu are equimeasurable, hence
Ixvlle = lIxulle-
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introduction — general problem

Calderén-Lozanowskii spaces — convolution

Note that if A(V) = A(U), then xv and xu are equimeasurable, hence
lIxvlle = llxulle. Thus there exists a function &g : [0, 00) — [0, 00) such that
for every measurable V C G with A(V) < oo

Ee(MV)) = lIxvlle-
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introduction — general problem

Calderén-Lozanowskii spaces — convolution

Note that if A(V) = A(U), then xv and xu are equimeasurable, hence
lIxvlle = llxulle. Thus there exists a function &g : [0, 00) — [0, 00) such that
for every measurable V C G with A(V) < oo

Ee(MV)) = lIxvlle-

The function &g (which is uniquely determined just on the range of \), is called
the fundamental function of E.
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introduction — general problem

Calderén-Lozanowskii spaces — convolution

Note that if A(V) = A(U), then xv and xu are equimeasurable, hence
lIxvlle = llxulle. Thus there exists a function &g : [0, 00) — [0, 00) such that
for every measurable V C G with A(V) < oo

Ee(MV)) = lIxvlle-

The function &g (which is uniquely determined just on the range of \), is called
the fundamental function of E.
Finally, we make the following assumptions on the fundamental function:
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introduction — general problem

Calderén-Lozanowskii spaces — convolution

Note that if A(V) = A(U), then xv and xu are equimeasurable, hence
lIxvlle = llxulle. Thus there exists a function &g : [0, 00) — [0, 00) such that
for every measurable V C G with A(V) < oo

Ee(MV)) = lIxvlle-

The function &g (which is uniquely determined just on the range of \), is called
the fundamental function of E.

Finally, we make the following assumptions on the fundamental function:

(e) The fundamental function &g is continuous at 0, that is, lim;—o&e(t) = 0.
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introduction — general problem

Calderén-Lozanowskii spaces — convolution

Note that if A(V) = A(U), then xv and xu are equimeasurable, hence
lIxvlle = llxulle. Thus there exists a function &g : [0, 00) — [0, 00) such that
for every measurable V C G with A(V) < oo

Ee(MV)) = lIxvlle-

The function &g (which is uniquely determined just on the range of \), is called
the fundamental function of E.

Finally, we make the following assumptions on the fundamental function:

(e) The fundamental function &g is continuous at 0, that is, lim;—o&e(t) = 0.
(f) The fundamental function & is unbounded, that is, lim¢— o £e(t) = co.
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introduction — general problem

Calderén-Lozanowskii spaces — convolution

Let G be a locally compact group that satisfies the condition

(%) for every compact neighbourhood V of the identity element of G,
there exist & > 1 and a strictly increasing sequence (pn)nen Such that
for each n € N, A(V?P") < aX(VP);
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introduction — general problem

Calderén-Lozanowskii spaces — convolution

Let G be a locally compact group that satisfies the condition

(%) for every compact neighbourhood V of the identity element of G,
there exist & > 1 and a strictly increasing sequence (pn)nen Such that
for each n € N, A(V?P") < aX(VP);

and let ¢;, i = 1,2, 3 be Young functions with @;(b,;) > 0, for i = 1,2, 3 and

liming £L 0092 (%)

= OQ.
=0 xp3t(x)
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introduction — general problem

Calderén-Lozanowskii spaces — convolution

Let G be a locally compact group that satisfies the condition

(%) for every compact neighbourhood V of the identity element of G,
there exist & > 1 and a strictly increasing sequence (pn)nen Such that
for each n € N, A(V?P") < aX(VP);

and let ¢;, i = 1,2, 3 be Young functions with @;(b,;) > 0, for i = 1,2, 3 and

liming £L 0092 (%)

= OQ.
=0 xp3t(x)

If G is non-compact, then the set F := {(f,g) € E,, x Eg, : || *|g| € Ex} is
of first category in E,, X E,.
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introduction — general problem

Calderén-Lozanowskii spaces — convolution

Let G be a locally compact group that satisfies the condition

(%) for every compact neighbourhood V of the identity element of G,
there exist & > 1 and a strictly increasing sequence (pn)nen Such that
for each n € N, A(V?P") < aX(VP);

and let ¢;, i = 1,2, 3 be Young functions with @;(b,;) > 0, for i = 1,2, 3 and

liming £L 0092 (%)

= OQ.
x>0 x5 (x)

If G is non-compact, then the set F := {(f,g) € E,, x Eg, : || *|g| € Ex} is
of first category in E,, X E,.

Locally compact group G having polynomial growth satisfies the condition ().
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introduction — general problem

Calderén-Lozanowskii spaces — convolution

Let G be a locally compact group that satisfies the condition

(%) for every compact neighbourhood V of the identity element of G,
there exist & > 1 and a strictly increasing sequence (pn)nen Such that
for each n € N, A(V?P") < aX(VP);

and let ¢;, i = 1,2, 3 be Young functions with @;(b,;) > 0, for i = 1,2, 3 and

i

liming £L 0092 (%)

= OQ.
x>0 x5 (x)

If G is non-compact, then the set F := {(f,g) € E,, x Eg, : || *|g| € Ex} is
of first category in E,, X E,.

Locally compact group G having polynomial growth satisfies the condition ().
It is an extension of a result from [A. Kamiriska and J. Musielak, On
convolution operator in Orlicz spaces, Rev. Mat. Complut. 2 (1989),
157-178.] where it is shown that F # E,, x E,, in the case of Orlicz spaces
E,, for Abelian groups G.
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introduction — general problem

Calderén-Lozanowskii spaces — convolution

Let G be a locally compact group that satisfies the condition

(%) for every compact neighbourhood V of the identity element of G
there exist k > 1 and a sequence (U,)nen contained in V' with

lim A(U,) =0 and \(U; 1 U,) < 6A(Un);

n—o0

and let ¢;, i = 1,2, 3 be Young functions such that

i P1 ()22 (%)

=i = 00.
x=eo xpy(x)

Then the set

F={(f,g) € L"(G) x L**(G) : |f| x |g] € L™*(G)}.

is of first category in L?(G) x L¥2(G).
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Calderén-Lozanowskii spaces — convolution

Locally compact group G is amenable whenever it fulfills so-called Leptin
condition, that is for every compact subset U of G and any € > 0 there exists a
compact subset V in G of positive measure such that A(UV) < (1 + e)A(V).
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Calderén-Lozanowskii spaces — convolution

Locally compact group G is amenable whenever it fulfills so-called Leptin
condition, that is for every compact subset U of G and any € > 0 there exists a
compact subset V in G of positive measure such that A(UV) < (1 + e)A(V).

Theorem

Let G be an amenable locally compact group, ¢ a Young function with
limogo(t)/t =0, ¢(b,) > 0 and ¥ be a Young function with ¥(by) = co. If G
—

is non-compact, then the set

F={(f,g) € E, X Ey :|f|x|g| € Ey}

is of first category in E, X Ey.
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introduction — general problem

Calderén-Lozanowskii spaces — convolution

Locally compact group G is amenable whenever it fulfills so-called Leptin
condition, that is for every compact subset U of G and any € > 0 there exists a
compact subset V in G of positive measure such that A(UV) < (1 + e)A(V).

Theorem

Let G be an amenable locally compact group, ¢ a Young function with
ling)go(t)/t =0, ¢(b,) > 0 and ¥ be a Young function with ¥(by) = co. If G
—

is non-compact, then the set

F={(f,g) € E, X Ey :|f|x|g| € Ey}

is of first category in E, X Ey.

The above generalize the main result of [H. Hudzik, A. Kamiriska and J.
Musielak, On some Banach algebras given by a modular (1985)] from abelian
locally compact groups to amenable ones in the context of Orlicz spaces.
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Calderén-Lozanowskii spaces — convolution

Locally compact group G is amenable whenever it fulfills so-called Leptin
condition, that is for every compact subset U of G and any € > 0 there exists a
compact subset V in G of positive measure such that A(UV) < (1 + e)A(V).

Theorem

Let G be an amenable locally compact group, ¢ a Young function with
ling)go(t)/t =0, ¢(b,) > 0 and ¥ be a Young function with ¥(by) = co. If G
—

is non-compact, then the set

F={(f,g) € E, X Ey :|f|x|g| € Ey}

is of first category in E, X Ey.

The above generalize the main result of [H. Hudzik, A. Kamiriska and J.
Musielak, On some Banach algebras given by a modular (1985)] from abelian
locally compact groups to amenable ones in the context of Orlicz spaces.

The amenability hypothesis cannot be dropped — R.A. Kunze and E.M. Stein
(1960) show that the multiplication group of real matrices with determinant 1,
G = SL(2,R), satisfies LP(G) x L?(G) C L*(G) for 1 < p < 2.
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introduction — general problem

Calderén-Lozanowskii spaces — convolution

Assume that G is a non-compact but locally compact group and ¢, v are
Young functions with ¢(b,) > 0, ¥(by) > 0, satisfying

liminf M = 0.

x—0

(1.) If E is a real space, then for every compact set V' with A(V) > 0, the set
Fv ={(f,g) € E, x Ey : f * g(x) is well defined in some point x € V'}

is of first category in E, X Ey.
(2.) If E is complex, then for every compact set V with A(V) > 0, the set

F, = {(f,g) € E, x Ey : |f| % |g|(x) is finite at some point x € V}

is of first category in E, X Ey.
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Calderén-Lozanowskii spaces — convolution

For each x € G, A«(A) = A(Ax) is a left invariant regular Borel measure on G.
The uniqueness of the left Haar measure implies that for each x € G there is a
positive number, say A(x), such that A, = A(x)\. The function

A : G — (0,00) is called the modular function of G. A is a continuous
homomorphism on G. The group G is called unimodular whenever A = 1. In
this case, the left Haar measure and the right Haar measure coincide.

Theorem

Assume that G is a non-unimodular locally compact group and ¢, ¢ are Young
functions with ling) w(t)/t =0, ¢(b,) > 0 and ¥(by) > 0. For every compact
—

set V with A(V) > 0, the set

Fv ={(f,g) € E, x Ey : f x g is well defined in some point x € V}

is of first category in E, X Ey.
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introduction — general problem
Side results

S & Strobin, Dichotomies for Co(X) and Cp(X) spaces, Czechoslovak Math. J.
63(1), (2013), 91-105.

Theorem

Assume that (X, u) is a topological measure space which is inner regular and
such that the topological space X is locally compact and o-compact. Let

h € L}, and let (D,) be a sequence of measurable subsets of X such that
sup,en [p, [hldp = co. Then the set

Ep(p,) = {(f,g) € CoxCop: (

Dy

fgh d,u) is bounded}
n=1

is o-strongly ball porous.
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Side results

S & Strobin, Dichotomies for Co(X) and Cp(X) spaces, Czechoslovak Math. J.
63(1), (2013), 91-105.

Theorem

Assume that (X, u) is a topological measure space which is inner regular and
such that the topological space X is locally compact and o-compact. Let

h € L}, and let (D,) be a sequence of measurable subsets of X such that
sup,en [p, [hldp = co. Then the set

El?,(D,.) = {(f7 g) €CoxCo: ( fgh d,u) is bounded}
n=1

Dy

is o-strongly ball porous.

Balcerzak & Wachowicz, 2000

The set E = {(x,y) € co X o : (D7, Xiyi)n1 is bounded} is meager.
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Side results

G& Strobin, Spaceability of sets in L, X Lq and Gy x Co, J. Math. Anal. Appl.
440 (2016), no. 2, 451-465.

Assume that one of the following conditions hold:
(i) 0< % +% <1 and sup{u(A): A€ X, u(A) < o} =o0;
(i) 2+ %> 1 and inf{u(A):Ac X, u(A)>0}=0.
Then the set E = {(f,g) € L? x L9 : fg ¢ L"} is speceable in LP x L9.

Theorem

Let G be a locally compact non-compact topological group. Let K be a fixed
compact symmetric neighborhood of the identity element of G. Let
oo >p, g > 1 be such that % + % < 1. Then the set

E={(f,g) € L x L9 : Vyek (f *xg(x) = o0 or fxg(x) does not exists)}

is spaceable.
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Further questions

1. Is a quantitative version of Saeki Theorem (the solution for LP-conjecture)
true?

2. Are the spaceability results, such as in the previous slide, true for
Calderén-Lozanowskii spaces?
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